
NASA-CR-1927_O

(NASA-CR-192740) THE ORGANIZER:

PLANNING TASKS WITH AN EMERGENT

CONNECTIONIST/SYMBOLIC SYSTEM

(Rensselaer Polytechnic Inst.)

11% p

NAGW-1333 _o cu onENT

_4z-

ECHNIC J.

N93-71628 p. tl'-/
,

Unclas

Z9/63 0153780

Center for Intelligent
Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

Technioal Reports

Englnoor_ng and Physical Solenoes LIb_
University o£ I,iaryland

LOllege Park WarzZan_ _Og_4g

THE ORGANIZER: PLANNING
TASKS WITH AN EMERGENT

CONNECTIONIST/SYMBOLIC SYSTEM

By:

M.C. Moed

Department of Electrical, Computer and Systems Engineering
Department of Mechanical Engineering, Aeronautical

Engineering & Mechanics
Rensselaer Polytechnic Institute

Troy, New York 12180-3590

September 1989

CIRSSE Document #42

THE ORGANIZER: PLANNING TASKS

WITH AN EMERGENT

CONNECTIONIST/SYMBOLIC SYSTEM

Michael C. Moed

Center for Intelligent Robotic Systems for Space Exploration (CIRSSE)

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

THE ORGANIZER: PLANNING TASKS WITH

AN EMERGENT

CONNECTIONIST/SYMBOLIC SYSTEM

Michael C. Moed

Center for Intelligent Robotic Systems for Space Exploration (CIRSSE)
Rensselaer 15olvtechnic Institute

Troy, New Yrork 12180-3590

Abstract

A methodology is proposed for the research and implementation of a learn-

ing and planning system for robotic tasks named The Organizer. Under the

['ramework of the Organization level of the Intelligent Machine. the Organizer

follows a bottom up approach by creating condition/action/effect rules through

experimentation and observation of an abstracted environment. Created rules

may have probabilistic effects in non-deterministic environments. Feedback

is returned from the lower levels of the Intelligent Machine which provides a

measure of comple_ty and describes the difficulty of executing a particular

action in a given environment. The rules form a symbolic model of the el:

fect of the Intelligent Machine on a given environment aad are compiled into a

connectionist-based comple_ty model to allow modeling and generalization of

complexity values to untested rules. The rules are also compiled into a goal-
directed Boltzma_n Machine which allows subtask determination, skill forma_

tion and goal-directed exploration through the maximization of an analytic

value representing Knowledge in the system. Methods are shown for overlaying

e.xisting symbolic learning systems on the Organizer's rule structure by a sym-

bolic generalization example. A graph search planner is used to develop task

plans which achieve a user-provided goal through the use of rules and skills. In

the development of this architecture, comparisons are made between Procedural

planners, Symbolic learning systems, Neural networks and Classifier Systems.

Further research is proposed in the areas of goal-directed skill formation and

planning.

ii

Contents

Abstract ii

Table of Contents

List of Figures

°lo

Ul

V

Introduction 1

1.1 An Overview "2

1.1.1 The Scenario "2

1.1.'2 High Level Mechanisms 3

1.2 Functional Decomposition of High Level Mechanisms 4

1.3 Statement of Problem 5

1.4 Problem Domain 6

1.5 Problems Addressed 7

1.6 Organization of this Report ,

Literature Review and Method of Approach 8

2.1 Literature Review 3

2.1.1 Procedural Planners

2.]..2 Neural Networks [2

2.1.3 Classifier Systems 17

2.1.4 Saridis' Intelligent Machine 20

"2.'2 Method of Approach 23

Design and Operation of the Organizer 26

3.1 Introduction 26

3.1.1 Responsibilities of the Organizer 26

3.2 Input/Output Description 27

3.2.1 State of the Environment 27

3.2.2 Nature of Operating Environment 28

3.2.3 Organizer Commands to the Coordinators 2_

3.2.4 Effect of Lower Levels on the Environment 29

3.2.5 Feedback Provided by the Coordination Level to the Organizer 30

3.3 Internal formulation of the Organizer 30

3.3.1 Basic Mechanisms and Operation 32

The R.ule Store 33

The Complexity Model :_4

Training the complexity model 36

Extracting the complexity of a sentence :_8

A priori inhibitory connections and weights 38

Discussion of the complexity model 38

°°°

111

\

3.4

3.5

An example of a complexity model 40

Operation of the Basic Mechanisms 41

PLAY Algorithm 42

Updating the effect probabiUty values 44

Updating the complexity model 44

A priori rules 44

Discussion of basic operation mode 45

3.3.2 Advanced Mechanisms and Operation 47

Symbolic Learning and The Generalizer 47

A Generalization algorithm 49

Default hierarchies and valid generalizations 50

Discussion on generalization 51

Example of generalization 52

A Bottzmann Machine for Directed Exploration 53

Search techniques 56

A genetic algorithm search technique 56

Simulated annealing 59

Expanding Subinterval Random Search 60

Experimental Results 60

Discussion on search techniques 61

Combined search of _+ and/_" 62

How good is the found sentence? 62

Goal-directed exploration 64

Task Decomposition in Planning 65
The Planner 66

3.4.1 A structured search method 66

Exhaustive Search 66

Neural Network search 67

Gcaph Search 68

Graphical decomposition of rules 68

3.4.2 Cost of a plan 71
3.4.3 Evaluation Functions 72

3.4.4 Acquisition of New Information 72

Summary 73

4 Further Research 74

Research Goals 74

Proposed Research 75
Future work 75

iv

List of Figures

Figure 2.1 84

Figure 3.1 85
......... ° ° ° . , ° ,

Figure 3.2 86

Figures 3.3a - 3.3b 87
...... o • °

Figures 3.3c - 3.3d 88
• ° o • • o o

Figures 3.3e - 3.3f 89
........... ,

Figures 3.3g - 3.3h 90
.... ° ° , . ° , °

Figure 3.3i 91
.......... • . , °

Figures 3.4a - 3.4b 92
Figures 3.4c - 3.4d 93
Figures 3.4e - 3.4f 4
Figures 3.4g - 3.4h 95

Figure 3.4i 96............. ,

Figures 3.5a - 3.5b 97
Figures 3.5c - 3.5d 98

Figures 3.5e - 3.5f 99
Figures 3.5g - 3.5h 100
Figure 3.5i

Figure 3.6a

Figure 3.6b

Figure 3.6c

Figure 3.6d

Figure 3.6e

Figure 3.6f

.................................... 101

................................... 102

................................... 103

................................... 104

................................... 105

................................... 106

.................................... 1.07

v

1 Introduction

As technology progresses, man creates and explores worlds and environments which

were previously unattainable or non-e_stant. With the last several years, man has

ventured into space, explored the depths of the oceans, and charted frozen lands

in the Antartic. Man's pursuit of knowledge has also led to the construction of

environments required for nuclear energy production and its counterpart, nuclear

waste disposal. Ironically, man has also discovered that he cannot survive unaided

in each of these created or encounted environments because of inclement conditions

or extreme hazards. However. man has also found it necessary to continue limited

exposure to these new worlds in order to maintain currently required capabilities and

pursue further research.

To eliminate man's exposure to such hazards, it is necessary to create a device

which can perform with some of the anthropomorphic capabilities of humans, and

substitute the device in place of a human operator in these environments. For sit-

uations in which decision making by a human is not available or expedient, these

devices must also possess the necessary intelligence to perform their tasks reliably in

a world which may possess varying degrees of uncertainty. These devices have been

termed Robots or Intelligent Machines.

In general, intelligent robots or machines must be able to perform a variety of

functions ranging from high intelligence to high precision tasks, depending on the

situation. The structure of such a device can be stratified fi'om high level mechanisms

to low level functions. Some examples of high level mect:anisms for an Intelligent
Machine are:

• Learning about its capabilities and its environment through observation and

discovery or through a teacher.

• Forming axl abstract internal model of its environment based on what the In-

telligent Machine has learned.

• Developing abstract plans and making decisions based on desired goals and
needs through the use of internal models.

Some middle level mechanisms are:

• Selecting and scheduling planned tasks for executioa.

• Mapping abstract concepts to current environmental situations.

• Aiding the formation of internal models by processing features of sensory infor-
mation.

• Monitoring task execution and completion.

Finally, lower level functions include:

• Executing tasks with a dictated degree of precision.

• Obtaining raw sensor data and performing limited processing on it.

• Providing reflex responses in extreme situations.

Methodologies for achieving structures for Intelligent Machines have been pro-

posed by [Alb75, Sar79, Vam87, APW88]. Saridis has proposed a mathematical

framework for an hatelligent Machine which can be viewed as an intersection of the

major disiplines of Artificial Intelligence, Operations Research, and Control Theory.

Saridis' system is formulated to optimize a performance measure to allow for efficient

planning and execution.

This paper addresses the problem of devising a framework for the high level mech-

anisms of an Intelligent Machine patterned after Saridis' model. These upper level

functions form the Organization level of this model. Included in this work is a proposal

for a suitable computational architecture which provides the necessary functionality

for this level. Also included are proposals for detailed research into two parts of the

architecture: goal-directed learning and exploration, and the development of abstract

task plans based on learned internal models.

\

1.1 An Overview

Environments which are hazardous to human life provide a good application for Intel-

ligent Machines. Valavanis [Va1861 provided a case study detailing the performance of

an intelligent robot in a Nuclear Power facility. An overview of this study will serve

to outline the issues involved in designing the high level mechanisms of the machine.

1.1.1 The Scenario

Valavanis describes the following scenario:

Suppose that an emergency situation occurs in a Nuclear facihty due to a power

failure which renders normal electronic remote control of the plant valves impossible.

As a result, the pressure control in this highly radioactive environment fails and a

breach of primary containment is identified and operating personnel are evacuated.

Several valve, flange or pipe related operations must be performed to control the

pressure in the facility, depending on the state of the plant _vhen the power falls. An

autonomous mobile robot with visual capabilities is used to perform these operations.

The mobile robot has been trained to perform tasks in this type of environment, and

has an internal model of its capabilities. After receiving a goal to be achieved from

a human operator, it is the responsibility of this robot to enter the radioactive area,

observe the state of the environment, develop a plan to achieve the goal based on its

internal models, and execute each of the tasks in that ptaxl. The robot is responsible

for planning and performing actions towards the goal which are efficient and have
high likelihood of success.

For example, supposesuchan emergencysituation occurs and the robot is given
the command "Shut off Pipe 1". The robot, basedon its past training and planning
e:vperience,might generatethe following plan:

1. Robot Travel to Entrance

2. Robot Travel to Toolchest

3. Arm2 Open Toolchest

4. Arm1 Grasp Wrench

5. Robot Travel to Pipe 1

6. Arm2 Grasp Pipe 1

7. Arml Turn Valve with Wrench

8. Arm2 ReleasePipe 1

9. Robot Travel to Toolchest

10. Arml Release Wrench in Toolchest

I.i. Arm2 Close Toolchest

12. Robot Travel to Exit

This plan would be generated if the Wrench is known to be in the Toolchest. and

it is necessary to turn the Valve on Pipe 1 with the Wrench in order to shut off Pipe

1. It should be noted that if the Toolchest was Open upon entry to the situation, the

step which opens it would have been omitted.

1.1.2 High Level Mechanisms

The following steps must be taken in order to allow the high level functions of the

mobile robot to perform with the capabilities described above:

l° Training the mobile robot to allow for the development of internal models of

objects which it may encounter and its capabilities in manipulating these ob-

jects.

° Training the mobile robot to plan for goal-oriented behavior. This allows the

formation of the proper sequence of valve, flange, pipe, manipulation and travel

operations.

3. Receiving an operator goal and development of an abstract plan of tasks based

on its internal model which minimizes both complexity and risk of failure.

The above scenario indicates several required high level functions and provides a

brief introduction to the desired capabilities of an Intelligent Machine.

1.2 Functional Decomposition of High Level Mechanisms

Based on the above observations, we can segment the high level functions of the

Organization level as follows:

• Training:

- Training for internal model development: Through some procedure, such

as supervised learning, reinforcement learning, or learning through e.,cplo-

ration and discovery, the Intelligent Machine must build up an abstract

internal representation of actions it can perform on objects. By abstract-

ing the representation of an object from its actual form. many of the details

of the object and its environment are lost or ignored. At this levei, the

abstracted representation allows the machine to develop conceptual re-

lationships between actions and objects without bothering with complex

details. Included in this representation should be the difficulty or complex-

ity of performing the actions, in order to provide a measure of efficiency

when executing a task.

- Training for goal-seeking behavior: Using one' ,)t" the learning methods

above, the Intelligent Machine must learn the ,onsequences of actions it

performs on objects in its abstracted environment. The effects the Intel-

ligent Machine has on objects may be probabitistic which facilitates the

modeling of likelihood of success. By developing an abstract internal model

of its effects on objects, it can formulate a plan of actions to execute in

order to transform objects from an initial state I,o a desired goal state.

• Planning: Provided with a description of the current (or initial) state of objects

in the abstracted environment, the Intelligent ._laci_ine must plan an ordered

series of tasks to achieve a desired goal state for the objects. The following
considerations should be made:

Since the high level functions maintain an abstract description of the ob-

jects in the world, the plan that is formulated is Mso abstracted to a large

degree. The function of planning at this level is Io develop an ordered list

of tasks to perform which achieve an abstract_,_t goal. The plan. which

at minimum provides the necessarv actions re_l_ired to achieve the goal.

ignores many environmental details. Lower le,.','ls in the system must map

4

OR,t_NAL PAL._E IS

OF POOR QUALITY

this plan to a more detailed description of the environment. This mapping

will enhance the goal directed behavior of the abstracted plan by adding

additional subtasks dictated by a richer environmental model.

This abstraction can be illustratated using the mobile robot example above.

In the generated plan, the intelligent robot has specified the steps:

1. Arm2 Open Toolchest

2. Arml Grasp Wrench

Within the Toolchest, the Wrench may be in various positions covered by

several other tools. However. the environmental specifics of the situation

are not richly represented in the abstraction space. Therefore, the plan

does not include subtasks which solve the more detailed problems. These

subtasks must be added to the goal plan by on-line planning mechanisms

which are resident in the Intelligent Machine, but outside of the domain

of the Organization Level.

The plan should be formulated in a manner which minimizes the com-

plexity of its execution while maximizing the likelihood of success. To do

this. the planner must build on information stored in the internal models

developed during training.

Provided with this introduction, it is possible to give the formal problem state-
ment.

\

1.3 Statement of Problem

A computational architecture and its underlying analytic functions must be created

for the Organization Level of the Intelligent Machine as described by Saridis. The

Organization level must possess the following capabilities:

• The ability to build and store an abstract internal model of the effect of the

Intelligent Machine on objects in its environment.

* The ability to represent the capabilities of the Intelligent Machine bv modeling

the learned complexities of actions executed by the Machine.

* Tile abilitv to exhibit goal-directed behavior through learning.

• The ability to analytically describe tasks in terms of complexities and likefihood
O[success.

• Tile abilitv to develop an abstract plan which optimizes an analytic criteria

based on task complexity and likelihood of success which achieves a desired

goal state from an initial state based on internal modcls.

1.4 Problem Domain

The desired capabilities of the Organizer dictate which internal models should be

considered. Thus, it is important to consider the problem domain before developing

the internal structure of the system.

As presented above, the Organization level must develop _ sequence of tasks which

form a plan or procedure by manipulating objects in the environment. The example of

a mobile robot in a hazardous nuclear environment described typical responsibifities

of this level, and demonstrated one practical application. Let us consider two types of

planners, determine which is best for planning in the Organization level, and decide
on a suitable data structure for the internal model.

The first type of planner is termed a Procedural Planuer. Characteristics of a
Procedural Planner are:

• Functionally, a generated plan calls for object manipulation which changes the

state of the environment.

• Many types of objects are manipulated or transformed through a host of differ-
ent actions.

• Objects change state in the environment but generally do not decompose into
subobjects.

• A goal is achieved by developing an ordered sequence of different actions on

objects wich transform the environment to a desired state.

Procedural planners use groups of individual states to represent objects in the

environment. Examples of this type of planner are predicate calculus planners and

e.xper t systems.

The second type of planner is termed a Hierarchical Planner. Characteristics of a
Hierarchical Planner are:

• Functionally, a generated plan calls for the composition or decomposition of
objects.

• Objects can be formed by combining subobjects.

• Interrelations between object parts and whole is often detailed.

• A goal is achieved by executing tasks which reach a certain state or node in the

hierarchical object model.

Hierarchical planners use hierarchical data structures st,ch as graphs or trees to

represent objects. Examples of this type of planner are assembly planners such as

[HdMS88, HdM89, KM89]

From these descriptions, the Organization level best (its within the domain of

Procedural planners. Therefore, the internal model of this level should be able to

represent objects as sets of individual states in the environ_nent.

1.5 Problems Addressed

The problems addressed in this research are:

The design of a suitable computational architecture and internal models for the

Organization level of the Intelligent Machine.

The determination of an analytic criteria which combines complexity of task

execution and likelihood of task success for use in goal-directed behavior.

The development of methods for goal-directed exploration and learning which

seek to optimize the analytic criteria. This is one functional block of the archi-

tecture.

The development of an abstract planner which formulates a list of actions which

change objects in the abstracted environment from an initial state to a goal state

through the optimization of the analytic criteria. This is a second functional
block of the architecture.

1.6 Organization of this Report

The report is organized as follows: Section 1 presents an introduction and overview

of the problem. A literature search of Procedural Planners and Symbolic Learning

Systems, Neural Networks, Classifier Systems and Saridis" Intelligent Machine con-

cepts is presented in section 2. Also included in section 2 is a discussion on the

method of approach for this research. Section :3 describes the architectural model for

the Organization level, some preliminary results, along witll ct detailed description of

the proposed research. Section 4 provides a list of the proposed research, and other

research which should be performed under this architectur<

OF POON QUALITY

2 Literature Review and Method of Approach

The goal of this literature review is to provide the reader with background on both

past and on-going research in the areas of planning and learning as they pertain to the

development of the Organization level of the Intelligent Machine. To accomplish this

goal, research from the fields of Procedural planners and Symbolic Learning Systems,

Neural Networks, Classifier Systems and Saridis' Intelligent Machine concepts will be

presented and critiqued. A method of approach will be formulated and contrasted

with techniques presented in the review.

\

2.1 Literature Review

2.1.1 Procedural Planners

Procedural planners are planning systems characterized by t.he following features:

• Functionally, a generated plan calls for object manip_lation which changes the
state of the environment.

• XIany types of objects are manipulated or transformed through a host of differ-
ent actions.

• Objects change state in the environment but generally do not decompose into

subobjects.

• A goal is achieved by developing an ordered sequence of different actions on

objects which transform the environment to a desired state.

Some systems of this nature have also been called Domain Independent planners

or Predicate Calculus planners. Most of these planners were developed in the field of

Artificial Intelligence and used theorem proving by resolution as a method to create

a plan which transformed an initial state into a desired goal state.

STRIPS [FN71] was one of the first AI planners. In STRIPS, the problem space

is divided into the world model, a goal state, and a set of operators which acted on

object states in the world model to produce new object states. The world model is

created from a set of well-formed formulas (wff) which comprise the state of objects

in the world. The operators are first-order predicate calculus rules which contain two

parts: condition of use, and effect of use. The goal state is Mso a wff.

For example, the world state might be:

ON(BOX1,TABLE)

ON(BOX2,FLOOR)

AT(ROBOT,ROOM1)

GRASP(ROBOT,NOTHING)

8

A typical operator might be:

ON(x,TABLE) A AT(ROBOT,TABLE) =_ GRASP(ROBOT,x)

The goal state might be:

ON(BOX2,TABLE)

Along with the effectsof an operator is a list of wff to be added to the world
model (called the add list) and a list of wff to be deleted from the world model

(called the delete list) when the operator is executed. :\ search strategy named

Means-End Analysis is used to eliminate differences between the present world model

and the goal state by selecting subgoal operators. This is accomplished bv fomulating

a "difference clause" comprised of object states which are in either the present world

model or the goal state but not in both. Operators to be applied are then selected

based on whether their effect clauses remove difference clauses, or whether clauses

on the add list of an operator's effect can be used to resoiv,>away difference clauses.

This technique recursively breaks down the problem into subgoals which it attempts

to solve through matching or resolution.

Since Means-End Analysis tries to solve many possible subgoals in order to solve

a problem, a copy of working memory must be stored at eaci_ level of the search tree.

Since the amount of storage required would be huge, STRIP._ instead maintains a list

of all wff for all possible configurations of world states in a :4[obal memory. Flags are

set at each level of the search tree which indicate which clauses in the globat memory
are active at that node.

STRIPS has several problems. First, the Means-End Aaalysis search strategy is

often not effective for plans which must take the world mo_iel further away from an

initial state in order to reach a goal. Second, Means-End Analysis does not guarantee

that a goal will be found if one exists. Third, when a plan is found from an initial

state to a goal, it is not known how good the plan is, or it it is the most efficient

plan. Fourth, STRIPS is a top-down approach to plannil_g, since it requires a user

to encode all the possible rules, conditions and effects thai ,'an occur, as well _ all

the possible world model states in global memory. This tyI>e of top-down approach

suffers when the system encounters an unexpected situo.tion in the real world which

the user did not forsee and has not been exactly encoded in the rules. Fifth, STRIPS

provides no learning or generalization capabilities.

In later work, [FHN72] MACROPS were added to ttw STRIPS system which

allowed STRIPS to formulate and store generalized plans. However. the number

of preconditons required to execute a MACROP were large so their usefulness was

overshadowed by the amount of processing time required to r,est its appiicabilit.v.

ORIC-dNAL PAGE IS

OF POOR QUALITY

ABSTRIPS [Sar73] was built upon STRIPS and allowed the system to ignore a

large number of operator preconditions during planning by the use of Abstraction

Spaces. A plan was formulated at different levels of abstraction by the following

procedure:

1. Rank the criticality of each precondition.

2. At a given abstraction space level, consider only the preconditions which have

critical values equal to or above the value of that level.

3. Develop a set of tasks using Means-End Analysis to solve tile problem at the

current abstraction level.

The above procedure is repeated for each level of a.bst.raction, progressing from

the most critical levels to the least critical ones. At eactl .stage. the more abstract

plan is used to guide the lower, less abstract one.

The idea of a set of abstraction spaces can also be usc_d to allow a planner to

operate at different levels of detail, which is a large contribtLtion of this work. How-

ever. since ABSTRIPS is built on the STRIPS system, it sl ill contains many of the
drawbacks native to STRIPS.

NOAH [Sar75] uses some of the methods developed ill the ABSTRIPS system

along with novel techniques to solve non-linear plans. T1Lis system enhances the

Means-End Analysis search technique with a method for v_'presenting plans as non-

linear sequences of actions and ordering these actions to achieve a desired goal.

NOAH maintains a hierarchv of representation spaces ,:ailed a procedural net.

Each node in the net represents an action which can ,'ecursivelv be broken down into

a set of subactions, some of which can execute in parallel..ks the net is e.,cpanded.

a more detailed plan is formulated which achieves ttle goat. -\t each expansion level.

a set of critics determine whether a parallel action node _ _hat level is constrained

by other parallel action nodes, and therefore must be sequc,_ced in some manner. In

this way, NOAH separates subgoals into parallel partial or{l¢,ings of actions and then

sequences these orderings to form non-linear plans.

A major problem with the NOAH system is its top-dowll _tpproach which requires

a vast amount of encoded knowledge in order to perform w_ql. Noe only does the user

need to encode the conditions and effects of actions and the, world model but he/she

must also encode the entire abstraction space. Many of the !_obIems mentioned with

STRIPS are also present here, such as evaluating the efficiency of a plan, and the

guarantee of finding a plan if one exists.

MOLGEN [Ste81a, SteSlb] extends NOAH's capabililies by propagating con-

traints while formulating plans. Each task in the formulaI_,d plan posts constraints

to a constraint list which cannot be violated by later tasks. ['he constraints serve to

reduce the size of the search space by eliminating branches of the search tree which

can no longer be pursued. The constraints are syntactically _natched to outcomes of

operators, and have no semantic base.

OF pOOR QUALITY

10

A large body of work has been done on symbolic learning systems. Based on

predicate calculus rules, these learning systems create new rules or generalize existing

ones to extend the knowledge in the system to new situations. The research on

symbolic learning has extended to the domain of procedural planning systems, with

studies focusing on new rule generation, and on composition of e.,dsting rules into

skill sets for more efficient planning.

The ACT system lAnd83] is a symbolic learning system which operates on a

rule database. It contains two subprocesses, composition and proceguralization.

Composition takes a sequence of connected rules and combines them into a single

rule or skill. Proceduralization generalizes existing rules by removing some domain-

specific knowledge from the condition for rule execution.

Carbonell [Car86] divides search in problem solving methods into four classes,

which are differentiated by the amount of domain-specific knowledge. These classes
are:

\

* If no domain knowledge is available, weak methods such as heuristic search and

means-end analysis must be used.

* If specific domain knowledge in the form of plans and procedures exzists, these

plans can be instantiated directly.

* If general plans apply but not specific ones, the general plans can be used to

reduce the problem.

• If no specific plans apply, analogical transformations can be used from similar

problems which have been solved previously.

Carbonell develops a process for reasoning by analogy called Derivational Trans-

formation. This process examines problem steps, subgoals a.nd decisions in order to

recount past reasoning traces so they can be applied to new. similar problems.

DeJong [De J86] demonstrates the necessity of building schemata, or skills, into

knowledge based systems in order to reduce the dimensionality of the search space

for planning. This work focuses on creating and generalizing schemata, and classifies

the situations for generalization as:

Schema Composition: This operator is called on to combine known schema in

a novel way. The technique is employed when one or more of the preconditions

of a primary schema must be satisfied in a manner which has not yet been
detailed.

Secondary Effect Elevation: This procedure employs existing schema in a new

way by modifying the existing schema to denote that they can be used under
new situations.

11

ORIC-dN._L _',.:.(.'E _

OF' POOR QUALITY

• Schema Alterations: This technique modifies slots of a nearly correct schema

so it can fit the requirements of a new situation.

• Volitionalization: This method incorporates a non-planning declazitive schema

which provides factual information about a situation or event into a planning

schema that can be used in problem solving.

DeJong uses each of these techniques for generalizing aad creating schemata in

order to reduce the number of search steps required for genet'ating a task plan.

These examples provide a brief view of symbolic learning systems which operate on

predicate calculus-based systems. Each system allows the creation or generalization

of existing plans to new situations. However, it must be i:oted that these systems

are based upon the top-down, user-encoded rules, so the systems will still contain

and maintain the same inaccuracies present in AI procedural planners. Further,

symbolic systems do not "compile" the rules in the data hase to implicitly extract

semantic relationships between symbols. Instead, these leat'ning systems use symbolic

substitution based solely on the symbol names. However. these symbolic learners

could be layered upon other systems which provide semantic information about the

symbols, and together form a unified learning and planning ,trchitecture.

2.1.2 Neural Networks

It is desirable for a high level planning system to possess or develop an internal

representation of its actions and capabilities so that it can etFectively issue commands

which have a predictive outcome. Most robotic task planm,z'._ [FN71. FHN72, Sar73,

Sar75. Ste81a, SteSlb] attempt to achieve this representalion through the use of

syntactic models. These systems model the robot and its environment as a set of facts,

and actions on the world as rules which manipulate the cur:-¢_ _ set of ['acts or symbols.

These strictly symbofic systems often suffer from Minskv'_ r_:_lin61] "frame problem"

which causes the system to perform unintelligent behavior-,[ue to ;he emergence of

an unexpected set of conditions. Harnad [Har89] has charged that this problem is

innate to such systems because the symbols or syntactics ,[re not linked to actual

meanings or semantics. This "Symbol Grounding Problem" :dso prevents the system

from generalizing similar action/effects with repeated exposHre because no semantic

decomposition of a rule is available to explain the reason [or its effects. The same

limitation also inhibits a strictly symbolic system from predicting the effect of a newly

created rule which has not yet been tested.

Harnad examines the use of a combined symbolic/conmrctionist architecture to

solve the "Symbol Grounding Problem". In such a design, a neural network is used

to ascertain the complex interrelationships between the symbols and their effects.

The network can be used to direct and improve upon the ['ut_ctiouing of the syntactic

rules to allow for generalization of old rules and emergence ,,f new ones.

Dethick and Plaut [DP86] examine the Physical Symbol 5 vstem Hypothesis [NS76,

NewS0] in light of recent advances in rule processing witl_ ,iistributed ¢onnectionist

L2

OF POOR Qu,,LiTY

networks. By comparing the strengths and weaknesses of both systems, they conclude

that a comprehensive theory of intelligence may require a hybrid model which com-

bines the strengths of both approaches. Steels [Ste87] advocates self-organization of

data through the use of neural networks as an alternative to totally explicit program-

ming systems. Hutchison and Stephens [HS87] present the concept that symbolic

rules are often only approximate descriptions of more complex or probablistic rela-

tionships in the real world. They claim that in large systems, the imprecision and

context dependence of individual rules can produce unacceptable error rates in final

outputs. In contrast, they assert that neural network systems allow much more pre-

cise representation of complex and imprecise relationships, and the knowledge can be

learned directly from experience. The researchers concede, however, that the form of

knowledge in distributed systems usually defies verbal description or explanation.

Neural networks, or connectionist networks generally refer to sets of simple pro-

cessing units which are interconnected in a often complex way. The interconnecting

links contain weights which determine the influence of the output of one processing

unit on the input of another. Good reviews of connectionisl models are provided in

JAR88, RM86, Lip87]

The field of neural networks for computation arose from early work on simple

binary thresholding units called the ;'McCulloch-Pitts" neumu [PM47]. This research

developed methods for training a single neuron element to <levelop logical functions,
such as AND or NOR

Rosenblatt's development of the Perceptron processing _Lnit [Ros58] in which out-

put of a unit is a sigmoidal thresholded linear function o1 the inputs to the unit,

and use of groups of Perceptrons to learn some complex functions and classify data,

furthered connectionist research. Widrow and Hoff [WH60] ,teveloped a technique for

efficiently altering connection values, called "synaptic weight:s". Combined with the

proof of the Perceptron Convergence Theorem [B1o62] metimds were established for

modifying weights in a network of Perceptrons in order to reduce classification error.

However, as Minsky and Papert demonstrated [MP69], a single layer of Perceptrons

can not handle many classification problems, such as EXCI, USIVE-OR or PARITY

functions.

Kohonen [Koh72] and Anderson lAnd72] simulatenously published identical mod-

els for associative memory (or Content Addressable Memory]. The "linear associator"

model provides a linear model for processing elements, or neurons, which deviates

from the binary representation developed in earlier models.]'he method for initial-

izing these networks was based on Hebbian learning, assigning weights as a factor of

input/output node correlation.

Based on this initial work, many other connectionist theories developed. Hopfield

[Hop82] developed a theory for binary content-addressable memory (CAM) based on

a network with time varying neuron values. This theory used an Energy analog to

demonstrate how dynamic changes in node values approached the correct associative

output of the network by minimizing the Energy in the network. Later [Hop84], neu-

13

ORIC-_NhAL PAE:_E i_

OF POOR QUALITY

rons with graded response were used in CAM design. Grossberg [Gro88] approaches

connectionist theory from a neurobiological viewpoint, and demonstrated that the

Energy function in Hopfield's CAM formed a Lyapanov function which could be min-

imized. Hirsch [Hir87] examines convergence in the Hopfield model in some detail.

McEliece et al [MPRV87] discuss the capacity of the Hopfietd model.

Feldman and Ballard [FB82] extolled the use of distrihllted representations for

storing data in a network. Barto, Sutton and Anderson [BSA83] demonstrated a

reinforcement learning technique for pattern classifying neurons.

From this background, two major connectionist models evolved which are rele-

vant to the problems addressed in this report. They are Backpropagation networks

[RI-IW86a] and Boltzmann Machines [AHS85].

Backpropagation networks are created using layers of Perceptron elements. The

researchers of these networks have pointed out that bv using hidden layers of Per-

ceptrons between input and output layers, arbitrary mappillgs can be made between

input and output data. A technique for training these inherentiy feedforward networks

was developed based on gradient descent of the error between the actual output of the

network and the desired output. The error between these values is "backpropagated"

from output nodes, to hidden nodes, to input nodes and modifies the synaptic weight

between nodes at each layer. Simple Backprop networks can easily learn PARITY or

EXCLUSIVE-OR operations.

Applications for Backpropagation networks are numerous ztnd cover a broad range.

The capability for creating arbitrary mappings between input and output values has

led some researchers to use these networks as Transfer F_nctions from a control-

theoretic viewpoint. Kawato et al [KUIS88, MKSS88] use 13ackpropagation networks

to ,[evelop the multiplicative constants of non-linear terms fo," "he inverse-dynamics of

_ P_ima manipulator. Their model, which is based on the molor cortex in the brain, is

able to produce a torque value given a desired angular chall_._e in the first three joints

of the Puma over a set of trajectories. Goldberg and Pearhuutter [GP88] have used

these feedforward networks to control a two-link direct-drive arm. Their network is

trained by providing a window of trajectory points as input., and the correct torque
as the desired output.

The ability to classify patterns is another important application of Backpropaga-

tion networks. Since so many experiments have been done under this application,

only two are mentioned here for examples. Using a network. Marra et al developed

a mechanism for terrain classification using texture for an ALV [MDM88]. Given a

scene image in RGB, statisical measures for regions of the image are provided as input

to the network. The network produces a classification of the region such as "road",

"grass" or "sky". Ruck [Ruc87] used satellite range information to classify ground

targets such as tanks, jeeps, and trucks using a Backpropagation network.

13oltzmann Machines are connectionist networks which use the minimization of an

Energy formulation to produce its output. A Boltzmann tnachine contains a set of

nodes which can take on binary values, and a set of weights which dictate connections

14

OR!q;?.kC,,L? :.:?E'"

OF POOR QUALITY

between nodes. In a manner similar to Backpropagation neLworks, the nodes can be

labeled as input nodes, hidden nodes, or output nodes. However, unlike Backprop,

Boltzmann machine nodes are generally not arranged in feed forward levels.

The Energy in the Boltzmann Machine is a function of the llode values and weights

between nodes. It can be though of as a correlation value between node pairs which

provides a measure of "goodness" for a particular input-output pair. The lower the

Energy, the more likely the output response is the correct one for the particular input

data. Given a particular input data set on its input nodes, a Boltzmann machine

searches the set of possible states on the hidden and output nodes in order to find a

set of node states which minimize the Energy in the network. This set of states is

the correct associative output of the network.

The search technique generally used for determing the network output of a Boltz-

mann Machine is Simulated Annealing [KJV83]. Grossberg [Gro88] has shown that

a Boltzmann Machine is identical to a Hopfield network which uses Simulated An-

nealing to alter the characteristics of its node thresholding functions. Methods have

been developed to train a Boltzmann machine to associate input-output patterns

[AHS85, Sus88].

Several systems have been developed which combine symbolic processing with

neural networks to create knowledge-based or predicate caic¢,lus systems. Touretzky

and Hinton [TH85] used a distributed Boltzmann Machine ,u'chitecture to represent

two types of production systems. The first system contaill._ rules which consist of

pairs of working memory triples for the rule condition, and a,l arbitrary set of triples

which must be added to or deleted from working memory as the rule effect. Typical
rules are of the form:

Rule-l: (F A A) (F B B) = +(G A B)-(F A .%)-(F B IBl

The second production system is similar, but allows vari;_ble matching in the con-

dition part of a rule. For example:

Rule-2: (z A B) (z C D) _ +(P D Q)-(R S T)

where z is a variable to be matched by working memory _:lements.

The weights of the network are fixed once setup bv a tls_:l. These weights are used

to represent the rules and working memory elements. Go_,,t results were obtained

with a working memory alphabet size of 25 symbols, a set ot" ,tbout six rules, and six

elements in working memory at a time.

Touretzky [Tou87] expanded the production system coll__,pt for neural networks

[5

OR|.GJNAi P_;,C_ .%

OF POOR QUALITY

by developing the DUCS architecture which provides multi-level distributed repre-

sentations for frame-like concept structures. The goal of this research is to develop

a powerful short term memory that can construct and manipulate concepts rapidly.

Given some slot name/slot filler values as cues, DUCS can retrieve entire frames from

concept memory. DUCS can also complete frames which have empty slot values.

For example, given the frame:

AGENT: JOHN

VERB: THROW

OBJECT: z

DESTINATION: FOX

LOCATION: HOUSE

DUCS would retrieve the correct frame with z = ROCI(.

The architecture of DUCS is based on the Hopfietd and Tank model [HT85] which

is an optimization network based on Hopfield's 1984 design. Again. all concepts are

stored a priori by the user by designating the connection weights. Once these weights

are assigned they are fixed and the network cannot learn new concepts. In other

work, Hinton developed methods for learning some types of concepts [Hin86].

Dolan and Dyer [DD87] present the CRAM system which 0.1so performs rote bind-

ing in knowledge schema. The procedural memory in this system is similar to that of

Touretzkv and Hinton, with the memory composed of ma_lv winner-take all cliques.

Although they propose schema [earning, they do not detaii a technique for imple-

menting it. Shastri [SA89] uses a high level representation or concepts to develop a

connectionist system for rule based reasoning with multi-placed predicates and vari-

ables. This work focuses on the problem of variable bindil_g in networks which try

to perform predicate calculus operations. Again, this systen_ possesses no ability to

learn new rules or place bindings.

Day proposes a method for building an architecture in which connectionist and

standard symbolic AI implementation techniques complement each other [Day87].

The theory behind the system calls for a connectionist network to observe the internal

workings of a symbolic AI program and thereby learn to carry out the same problem

solving behavior. Day proposes the use of a Backpropagation network to learn the

AI rules. As he states, a major problem with this proposal is how to achieve the

desired linkage between the two systems, so the network can observe the behavior of

the rules. He does recommend the network learning be achieved by watching pre-

and post-effects of the expert system chaining, where the p_'e-effects are the input

and post-effects are the desired output of the network. In the paper, Day develops a

ro, lgh ;trchitecture for this theory.

16

As demonstrated by this review, neural networks have been used to create learn-

ing systems which can extract relationships between input data items, and produce

a desired output from data set correlations. Also, neural nets have recently been ap-

plied to concept storage in knowledge-based systems, but without significant learning

capabilities. Some work has been proposed on combining these two capabilities into

a single model for expert systems, but without actual results.

2.1.3 Classifier Systems

A novel approach to rule-based systems was presented by Holland [HHNT86] and is

entitled Classifier Systernz. This system combines a simple representational scheme

with highly general learning mechanisms to create a parallel, multi-rule production

system.

A basic classifier system contains a list of classifiers, a message list, an input

interface and an output interface. A classifier is string of cilaracters from the three-

letter alphabet (0,1,#) and is divided into a condition par_ and an action part. The
form of a classifier is:

C,/A

where Ci is a condition field and A is the classifier action..Aa example of a classifier is:

010101##10/111100#110

A classifier is active when a message on the message list matches the condition

part of the classifier. The # symbol is a don't care elemenl in the condition part,

and matches messages with either a 0 or 1 in that field. Tlu• basic execution cycle of

classifier system is given by Holland as:

1. Place all messages from the input interface on the curr_'nt message list.

2. Compare all messages on the current message list to all conditions of all classi-
fiers and record all matches.

3. For each set of matches satisfying the condition part of some classifier, post the

message specified by the action part to a new message list.

4. Replace the current message list with the new message list.

5. Process the message list through the output interface to produce the system's

current output.

6. Go to step 1.

17

In addition to the basic mechanismsof messagematching and posting, classifier
systems allow learning through the bucket brigade algorithm and by the genetic

algorithm. The first algorithm allows competition between classifiers by apportioning

credit to them on the basis of past usefulness to the system. This competition allows

stronger classifiers to have a higher success rate at posting messages to the message

list than weaker classifiers. The genetic algorithm provides a method for new classifier

creation from building blocks of previously successful classifiers.

The bucket brigade algorithm is a process of alternate bidding and payback. When

a message is posted to the current message list, all classifiers matching the message

bid for the opportunity of posting their actions to the new message list. The bid

a classifier can make is a function of the strength of the classifier, the specificity of

the condition of the classifier, and the support of the classifier. The strength of a

classifier is a measure of its past usefulness. The specificity of the condition allows

classifiers which are more detailed to have a higher probability of being selected to

post messages. In effect, this condition implements a default hierarchy, where more

general matching classifiers are chosen onlv when specific ones are weak. The support

parameter is dependent on the strength of the past classifiers which posted the given

matched message to the current message list. To some degree, l,his assigns a weighting

to messages on the current message list. A classifier is prob_d_iistically chosen to place

its message on the new message list depending on its total])id.

When a winning classifier places its message on the new message list. its strength

is decreased by the amount of its bid. At the same time. ;_il classifiers which sent

the message (in the previous time step) matched by the winz_er have their strengths

increased by a fraction of the bid of the winner. In this way. sl rengths are propagated

backward through a chain of classifiers. When messages arc, posted which satisfy a

goal-state, a reward is given to all the classifiers which poswd the messages. Even-

tually, this reward is past back through the bucket brigade 1o the chain of classifiers

which "'set the stage" for the goal-state. Over repeated trials, this chain gets rein-

forced as the classifier strengths increase. When a classifier repetitively bids and fails,

its strength continues to decrease, since it receive no payb_ck. When the strength

drops below a given threshold, the classifier is either removecL or replaced by a new
classifier.

The genetic algorithm is a search technique orignally pre._cnted in [Ho175!. In the

context of classifier systems, the genetic algorithm performs selective recombination

of existing classifiers to create new ones. Pairs of strong cla._sifiers are selected and

combined to create "offspring" classifiers. These offspring arc placed in the classifier

system with a strength value which is the average value or" its two parents.

Goldberg [Got83] employed a classifier system to general_' a rule set to cover the

operating conditions of a gas pipeline. The results of this work demonstrated the

existance of default hierarchies. WiIson's [Wi18.5! Animat _vstem was the first to

demonstrate the bucket brigade under infrequent payot[,:on,iitions. Sutton [Sut88]

has classified the bucket brigade as a temporal - difference method and has begun

L8

ORIClJN_L PP.L_-_IS

OF POOR QUALITY

placing the algorithm in a theoretical framework.

Wilson and Goldberg [WG89] present several inherent problems with classifier

systems. They cite that a primary weakness of the bucket brigade algorithm is the

difficulty in generating and maintaining long chains of rules which achieve a desired

goal. This weakness is due to the fragility of long chains and the difficulty of rein-

forcing early rules in a chain.

Riolo [Rio87] showed that the bucket-brigade algorithm can correctly allocate

strength when classifiers are coupled together to form chains. In [Rio89], Riolo ex-

amined the emergence of coupled chains of classifiers through use of the Triggered

Chaining Operator and the genetic algorithm. In this experiment, it was determined

that classifiers present in the early generations of the system may become parisites

on chained classifiers and lead to the demise of the entire coupled sequence. To over-

come the breakdown of coupled chains, Riolo recommends, among other things, that

competition between coupled and uncoupled rules be biased _o that coupled rules are

usually executed to completion.

Wilson [Wil87] proposes the use of a hierarchical credit allocation scheme for

maintaining long chains. He shows that using bucket brigade for reinforcement re-

quires 150 repetitions of a 10 step sequence in order to produce proper reinforcement,

which is quite inefficient. Instead. Wilson proposes using bucket brigade on short,

behaviorial chains which are arranged hierarchically to form the complete task. A

high-level task in the hierarchy is broken down using the }_idding algorithm from

standard classifier systems, and payment is distributed to all levels of the hierarchy.

Booker [Boo89] attempts to overcome long chain problems by representing each

situation with a cluster of rules instead of a single classifier. Tlm structure of a cluster

represents regularities in the input categories that excite it. _md the similarity that

each of these rules has in obtaining a goal. In this work. Booker points out that using

the genetic algorithm for rule discovery based on classifier strength is very inefficient.

and leads to extended learning efforts.

Zhou [Zho87] separates groups of classifiers into context memories in order to

develop systems which achieve context-dependent goals. By developing classifier con-

text memories, he allows the classifier system to maintain strong rules and chains for

each goal. such as finding a path through different mazes..,\ set of context classifiers

is called into main memory when the maze which it operat(., on is presented as the

problem to be solved. If different contexts are not used. ,:t_ains which find paths

through one experimental maze would become weak and die in another experimental

maze. Since the strength of chains and rules in one context is not valid when another

goal is sought. Zhou demonstrates the need to separate rule and chain strength from

goal-directed behavior in classifier systems.

Classifier systems possess several interesting features. They are combined learn-

ing/pianning systems which develop new rules and exhibit goal-directed behavior.

Also. the representational simplicity of classifiers fosters th,, development of default

hierarchie.s of general and specific rules, and provides simplistic mechanisms for rule

ORL'3i_LLL F.:::_C '.':;

OF POOR Q;,JAL_rV

19

specialization. Third, the strength of a rule provides a mechanism to evaluate per-

formance of the system.

However, there are problems inherent to classifier systems. It is difficult to gen-

erate and maintain long chains of classifiers and this complicates planning. Second,

using the genetic algorithm to generate new rules based solely on classifier strength is

not efficient. Third, there is an exhibited need to separate how good a rule is (context

independence) from how well it leads to a goal (context dependence).

k

2.1.4 Saridis' Intelligent Machine

Since 1977 Saridis has been developing an engineering approach to the design of

an Intelligent Machine [SV88, Sar79, Vai86, SM88, MS89]. This approach, called

Hierarchicallv Intelligent Control, is designed to organize, _:oordinate and execute

anthropomorphic tasks by a machine possessing various amounts of autonomv. This

approach utilizes analytical (probablistic) models to describe ,rod control the various

functions of the Intelligent Machine.

The Intelligent Machine consists of the following three layers:

1. The Organization level.

2. The Coordination level.

3. The Execution level.

These layers are organized in a tree like structure are showu in Figure 2.1, and axe

arranged according to the Principle of Increasing Precision with Decreasing

Intelligence. The function of each layer is described briefly [Sar89]:

. The Organization Level is responsible for high level de_:ision making. It must

organize a set of abstract rules or primatives to perform goal planning tasks. It

combines inductive reasoning and inference capabilities to formulate such task

plans.

'-t
_°

.

The Coordination Level is an intermediate structure serving as an interface

between the Organization and Execution levels. It cornbitles the commands from

the Organzation level with real-time world informafiou to generate a proper

sequence of subtasks for execution by the Machine. [SG84, WS88]

The Execution Level performs the appropriate actions in the environment as

dictated by the Coordinators. These actions can be expressed as control func-

tions and a measure is assigned to determine the execution performance.

A performance measure is provided as feedback to each level of the Machine. This

value provides evaluative information about the performance of that level, and allows

that level to modify its future actions based on the the evaluation of past executions.

For the Organization Level, this feedback allows for reinforcement learning of success-

ful plans, and avoidance of disastrous actions. The Machine can therefore be derived

20

ORIC,JP_L P_.CY£ .IS
OF POOR QUALITY

analytically as an optimization problem designed to extremize the performance value

at each level, as well as the performance of the Machine as a whole.

The focus of this approach is to provide an analytical structure to each level of

the machine. To develop this analytical structure, physical values are assigned to

abstract concepts from the field of Machine Intelligence in order to place the system

within a mathematical framework. The analytic formation is based on the following
fundamental definitions:

Def. 1: Machine Knowledge is defined to be the structured information acquired

and applied to remove ignorance or uncertainty about a specific task pertaining to

the Intelligent Machine.

This definition defines Machine Knowledge as a variable ;vhich can be assigned

and examined in the Intelligent Machine. When executing ,t task, the amount of

Knowledge in the Intelligent Machine changes. Therefore, we must also define the

Rate of Machine Knowledge, which updates the cumulative [(nowledge in the Ma-
chine.

Def. 2: Rate of Machine Knowledge is the flow of knowledge through an Intelli-
gent Machine.

Assuming that the Intelligent Machine contains a datahas,, of rules, a mechanism

must be defined which operates on this database in order t,o _pdate the cumulative

Knowledge in the Machine. This operator is called Machine Intelligence.

Def. 3: Machine Intelligence (MI) is the set of actions which operates on a

database (DB) of events to produce flow of knowledge (R).

In the Organization level of the Intelligent Machine, a task plan to achieive a goal

is developed by minimizing the uncertainty or complexity of the plan. This uncer-

tainty is a function of the imprecision of the process to be c'×ecuted. Similary, the

complexity of a process is a function of the required precision. This is defined as:

Def. 4: Imprecision is the uncertainty of execution of the various tasks of the

Intelligent Machine.

OF g'00R QU/ALI,TY

21

On the other hand, one may define Precision as follows:

Def. 5: Precision is the complement of Imprecision, and represents the complex-

ity of a process.

The above definitions present an outline for the development of an analytic struc-

ture for an Intelligent Machine, but do not inherently provide the actual measures to

be optimized at each level. Based on these definitions, Saridis developed an engineer-

ing analog to the problem formulation by casting the variables Knowledge, Rate of

Machine Knowledge and Uncertainty in terms of physical quantities. These physical

quantities are Energy and Entropy.

For the Intelligent Machine, Knowledge (K) about a particular state (n) in the

system is defined as:

K(n) - Energy

[t is necessary to develop a concept which provides an analytic relationship be-

tween the knowledge possessed about a state in a system, and the uncertainty that

the system is in that state given that knowledge. From Ja.vnes' principle of Maxi-

mum Entropy [Jay57], we can relate Knowledge of State n to the Probability that

the System is in State n (abbreviated P(K(n))):

= e

where a is a probability normalizing constant to insure that

P(K(n)) = 1
tt

This probability distribution comes from the field of statistical mechanics, and

relates the Energy of a system to the probability of the system being in the state

with that Energy value.

From this definition, it is apparent that when K(n) is extremized, the Probability

that the System is in State n approaches 1. This indicates that possessing a large

amount of Knowledge about a particular state increases the probability that the

system can correctly recognize when it is in that state.

Uncertainty, which is equivalent to the imprecision of the state of the system, is

a function of P(K(n)). An entropy measure is used to relate these two values:

H(K(n)) = -__,[P(K(n))ln{P(K(n))}]

"22

Here, H(K(n)) is the Uncertainty that the System is in State n. Saridis has shown

that Entropy can be used as a suitable measure to minimize in optimization problems

in order to guarantee good performance.

The Rate of Machine Knowledge (R), which reflects the updating of Knowledge

over time can be simply described as:

K

T

where T is a discrete time interval.

The advantage of using Saridis' Intelligent Machine as a blueprint for planning

systems is that it provides an analytic framework to operate within. Using the details

presented here, a planner can be created which develops task plans by minimizing

the uncertainty of the plan, and can describe its actions _ulalytically in terms of

Machine Knowledge, Rate of Machine Knowledge. Machine Intelligence, Uncertainty

and Complexity. This planner would form the Organization level of the Intelligent
Machine.

2.2 Method of Approach

It is desired for the learning and planning system to have the tollowing capabilities:

, The ability to build and store an abstract internal model of the effect of the

system on objects in its environment.

• The ability to represent the capabilities of the svstem isv modeling the learned

complexities of actions executed bv the robot.

• The ability to exhibit goal-directed behavior through h:zLvning.

• The ability to analytically describe tasks in terms of complexities and likelihood
of success.

The ability to develop an abstract plan which optimizes an analytic criteria

based on task complexity and likelihood of success wt_ich achieves a desired

goal state from an initial state based on internal models.

The AI predicate calculus-based procedural planners provide methods for devel-

oping an ordered set of tasks which achieve a given goal. To ,to this. they maintain

an abstract internal model of their effects on the environment, but do not possess any

learning capabilities. The user must encode all the possible ,:ondition/action/effect

rules, but this may not adequately represent what the robot ca, actually do. as stated

in the "frame problem". Also, these rules have deterministic ,ri['ects. which is often an

incorrect model of actual robot systems. These rules also co_,lain no mechanism for

representing the complexity of executing the rule in the given ,',, vironmental situation.

23

C,;(!,_'i,;,L F;..C'4Z _S

OF POOR QUALITY

Symbolic learning systems which are layered on these top-down planners can con-

rain and maintain these pre-encoded problems. Symbolic learning systems also are

not able to extract "semantic" relationships between the symbols, since the learning

procedure incorporated in such systems is based on symbol matching.

Neural networks provide a suitable mechanism for learning relationships between

symbols, thereby establishing a "semantic base", if the symbols are simple enough to

be provided as input to the network. Boltzmann machines a.re also able to provide

a quantitative performance value based on the Energy of the network, a feature

necessary to provide analytic information about a plan. Although techniques exist

for training connectionist networks and methods have been clemonstrated for using

neural networks for devising predicate calculus rules, very little work has been done

on combining these two types of systems.

Classifier systems present a rule-based system which has the representational sim-

plicity required bv neural networks, and provides techniques /br generalization and

specialization of rules. However, goal-directed behavior through use of the bucket

brigade algorithm is inefficient. Also, the genetic algorithm is not efficient for gener-

ating useful new rules by combining old rules strictly by rule strength.

The Organization level of Saridis' Intelligent Machine provides an analytic en-

vironment for the incorporation of the strengths of each of _he above systems into

a unified learning/planning model. The systems are incorporated in a bottom-up,

emergent model as follows:

• Use the simpliticity of classifiers to represent rules which are in the form of

condition/action/effect.

• Allow the rules to be created through the Machine's experimentation with the

environment, and the observation of its effects.

• Allow a probability to be associated with the effect portion of a rule to incor-

porate the likelihood that the condition/action part lea_ls to the given effect.

With the execution of an action for a given condition, receive feedback from the

Coordination level of the Intelligent Machine which provides the complexity of
the task.

Maintain a neural network model of complexities for condition/action pairs.

A neural network allows generalization of complexities across similar condi-

tion/action pairs by developing an inherent relationship between the symbols.

Maintain another neural network which extracts the relationships between con-

ditions for an action and effects of the action. This network will build "semantic"

relationships between symbols across a rule and should I)e used to foster emer-

gent goal-directed behavior by providing information on objects which change

state due to the action. Employ this neural network Lo develop emergent skill

24

OF poOR QU_Li'IN

setsin order to minimize searchduring planning by using the Energy of the net
asa performancemeasure.

• Usea searchtechnique for formulating a set of tasks to stgoal which minimizes

the complexity of tasks while maximizing likelihood of success during execution.

This method of approach creates an emergent connectionist/symbolic system for

planning robotic tasks within the framework of the Intelligent Machine. If desired,

it is possible to overlay top-down symbolic learning techniques on the rules which

emerge, but techniques for doing this will not be explicitly examined in this work.

25

3 Design and Operation of the Organizer

3.1 Introduction

The Organizer is responsible for high-level task planning aad decision making in

a combined planning, coordination and execution system. Together, the Organizer

(task planner) and lower levels of the system (task coordination and execution) per-

form tasks to affect the environmental state within which the system is operating. To

develop an engineering approach to the design of the Organizer, the functionality of

this system has been patterned after the Organization level of the Intelligent Machine

[SV88, Sax79, Va186, SM88, MS89].

3.1.1 Responsibilities of the Organizer

A list of features which encompass the Organizer axe as follows:

1. The Organizer is responsible for generating high level plans and decisions.

'2. A User must provide a description of the goal which the Organizer will attempt

to achieve through planning.

3. The Organizer must have information about the state o(its environment.

4. The Organizer must provide commands in a given grami_lar to the Coordination

level for execution in the environment. The result of the _'_ecution of acommand

will be a change in the state of the environment.

5. Feedback from the lower system levels indicating the cotllplexity/imprecision of

executing a command must be available to the Organi:',.v.

6. Over time, the Organizer must develop an internal mo_iel of its effects on the

environment in order to facilitate the planning of tasks.

7. The Organzier must also develop an internal model of the capabilities of the

execution system within which it operates.

8. The Organizer must provide an analytic measure or its performance, and make

decisions based upon the optimization of this measure.

To accomplish these responsibilities, the Organizer is divi(led into 5 main units.
These units are:

1. The Rule Store. This unit maintains the list of rules ,uL,l their effects.

2. The Complexity Model. This unit stores the executioll , omplexity of a particu-

lar sentence provided from the Organizer to the Coot(titivation level and predicts
complexity values for similar sentences.

26

OF F'OOR QUALITY

3. The Generalizer. This unit generalizes rules held in the rule store to allow for

a wider range of application.

4. The Boltzmann Machine for Directed Exploration. This ttnit allows goal-directed

behavior in the Intelligent Machine.

5. The Planner. Given a goal, this unit employs the above four functions to

construct a set of sentences which achieve that goal.

It is the purpose of this chapter to detail the functions of the units presented

above.

3.2 Input/Output Description

To understand the design of the Organizer, the following input/output characteristics

must be described which link the Organizer to the lower Ievels of the Intelligent

Machine. as well as the Machine to its operating environment.

1. The state of the environment as it is perceived by the ()rganizer.

:2. The nature of the environment within which the .'Viachit_e Operates.

3. The output that the Organizer provides to the Coordimttor level.

4. The effect of the lower levels on the environment.

5. The feedback provided by the Coordination level to the Organizer.

3.2.1 State of the Environment

The Organizer is intended to be a high level planner and handles data and commands

in an abstract form. One reflection of the abstract nature of the data within the

Organizer is the internal representation of objects in the environment.

The environment consists of a set of R objects, _2 = (o'0,--'2,''-,wR-l). Each

object wj can be in any of re(j) states. Let Qj be a vector 09 = (qO, q_,... ,q_(j)-l)

where q_e(O. 1) represents the states of object _o/. Let q_ = 1 if object wj is in

state k, else q_ = 0. Therefore, the vector Qj is a binary string which indicates the

inc!u.sion or exclusion of a particular st,ate for object ,_j. This mapping from the

actual environment to a binary state string is performed by _he lower levels of the

Intelligent Machine and is provided to the Organizer.

The state of the environment is denoted by Q = l"_=lQi where r is the string

concatenation operator. Q is therefore a binary string consisting of the states of all

objects in the environment. The length of Q is given by M = _./re(j).

For example, the object bottle mav be in state (full, hal f full, empty). It may

also be in the state (on- table, in- cabinet.in-gripper). This would be represented

by a binary string of length six. Assume that bottle is object number b. Then:

27

wb = bottle.

Qb = (q_,d,d,d,q_,q_) •

q_ = 1 if bottle is full, 0 otherwise.

q_ = 1 if bottle is hal f full, 0 otherwise.

q_ = 1 if bottle is empty, 0 otherwise.

q_ = 1 if bottle is on - table, 0 otherwise.

q_ = 1 if bottle is in - cabinet, 0 otherwise.

q_ = 1 if bottle is in - gripper, 0 otherwise.

For simplicity, the state string Q can also be indexed as Q = (q0, ql,"", qM-1).

Some parallels can be drawn between this representatioll scheme and methods

used in other research. Classifier systems [HHNT86] use binary strings as messages

to trigger internal and external events. This binary messagc string is also used to

represent the quasimorphism structure which describes objects and their features in

the environment in which the Classifier operates.

3.2.2 Nature of Operating Environment

It is important to consider the nature of the environment within which the Intelligent

Machine operates in order to construct an Organizer which will perform well. For

this system, we assume that the environment as perceived b\" the Organizer has the

following features:

1. The environment can change slowly over time without hlfluence from the Intel-

ligent Machine.

2. The environment is not completely observable.

These features combine to force a non-deterministic str_tcture on the design of

the Organizer. Since the environment can change slowly, tl_e effects of actions bv

the [ntelligent Machine on objects may also change slowly. Tllis forces the Organizer

to monitor the execution of actions that it plans in order to continually update its

selection scheme for future plans.

Since the environment perceived by the Organizer is an abstraction of the actual

environment, all the details which are present in the world _tre not available to the

Organizer. This indicates that under certain contexts, the ,_ffects of an action in a

particular environmental state may not be deterministic. In order to compensate for

a not completely observable environment, a probablistic structure should be used to

capture unmodeled relationships in the world.

3.2.3 Organizer Commands to the Coordinators

The Intelligent Machine consists of various effectors and sen._ors. The Machine can

perform a set of actions which alter the state of objects in the world. The Organizer

must be able to specify a command in a known grammar to the Coordination level

28

directing the useof the sensorsand effectorsto changethe state of the environment.
From this description wecan say:

A = (no, al,'.., at) is the set of effectors/sensors which are called actors.

V = (vo, vl,...,v,) is the set of actions.

D = (d0, dl,'-',dt) = (_2 U 0) is the set of direct objects.

I = (io, il,...,it) = (f_ U 0) is the set of indirect objects.

S = (A, V, D, I) is the set of possible output sentences from the Organizer to the

Coordination Level.

A particular sentence is given by si = (a:, vk, dl, i,_) where (aje.4, vkeV, dieD, i,,eI)

Then a sentence si is a 4-tupte set consisting of one actor, one action, zero or one

direct objects, and zero or one indirect objects.

Let N = IIAtl + IIV][+ IIDt[+][I!]. Thus. N is the sum or" the number of actors.

actions, direct objects and indirect objects defined for the Organizer.

This sets A. V. D,I form the prirnative events described in [Va1861 However, the

form of the grammar is an extension of the repeatable and non - repeatable events

also described in that work.

Let S" be the set of finite strings over S plus the null string, _. Then a plan P is

any subset of S'.

An example of a sentence is (ARM1 MOVE PEN TAISLE). In this example,

.4RM1 e A. MOVE e V, PEN e D, and TABLE e I. Note that (PEN, TABLE)
e _ as well.

3.2.4 Effect of Lower Levels on the Environment

After the Organizer generates a plan P. it is sent to the Coordination level for ex-

ecution. Each sentence si e P is executed individually. Tla: execution of si causes

the environment to change state in some fashion, and the abstraction of the state

can be observed by the Organizer. After the execution of se_Ltence si, the Organizer

perceives the environment to change from state Q to Q'. ['herefore, as perceived

by the Organizer, there exists a transition function A.: S x Q -- Q. The following

assumptions axe also made which are accounted for in the design of the Organizer:

. Given a sentence s containing d: e D and i¢. e I. with t dj -- _j, i_ - aa_) e _,

and a probability function P_(i) defined as the probat_ility that bit i of state

vector Q inverts due to the execution of _. we assume ttlat P_(i[ieQj t2 Qk) >>

P_(ilie-'(Qj u Qk)).

. Let A(x, y) be the Hamming distance between two binary strings z and y. Given

a sentence s which causes the Organizer to perceive a change of state from Q

to Q', then A(Q, Q') <<: M.

The first assumption states that the execution of a sentence sent from the Orga-

nizer to the Coordination level tends to ,effect tim state of t_t, iects which are directly

29

Ol_IGl,,_L PA(?E IS

OF POOR QUALITY

mentioned in the string rather than other objects in the environment. This forces

a focus of attention or locality of effect. The second assumption affords some

degree of continuity to the actions of the Intelligent Machine by insuring that the

environment does not alter radically due to the execution of a sentence.

3.2.5 Feedback Provided by the Coordination Level to the Organizer

Besides abstracting the state of the environment into a string Q, the Coordination

level is responsible for providing a feedback response He(s) to the Organizer which

indicates the complexity or difficulty of executing a particul_r sentence s. The feed-

back from the lower levels of the system should influence the formulation of a plan P

to optimize this feedback response. Since Saridis [Saz88] wa_ able to reformulate the

system control problem to use entropy as a control measure, entropy can effectively be

used as feedback from the Coordination level to represent the complexity or difficulty

of executing s.

We must assume that there is some cost of determining the feedback value by the

Coordination level each time a sentence s is passed from the Organizer. This cost is

due to the computational complexity of determining He(s) by analytic formulation of

the Coordinator. or due to the cost of feedback after executing the sentence s by the

execution level. Since optimal plan formulation requires a complexity measure for each

sentence in P, the Organizer should be able to internally develop a computationally

efficient model of the feedback response for a given sentence. This would reduce the

overall cost of executing a plan bv the Intelligent Machine by removing the cost of

interaction with the Coordination level during planning.

3.3 Internal formulation of the Organizer

With the input/output requirements of the Organizer detaih;d, it is possible to pro-

ceed with the description of the internal formulation of the Organizer. The following

section provides a blueprint for the basic mechanisms which tbrm the Organizer ar-

chitecture, the methods for training the Organizer, and how I,he formulation of plans

are facilitated by more complex structures.

The internal formulation can functionally be divided into training operations and

planning operations. A brief description to these operations is provided here as an

introduction to more lengthy definitions.

The main algorithm for non-goal directed training is named PLAY. PLAY cre-

ates rules by generating somewhat random sentences, sending the sentences to the

Coordination level for execution, and observing the abstracted effects of the sentences

on the environment once execution has completed. A rule is created by concatenating

the state string of the abstracted environment (condition), the sentence string that

was executed (action), and the new state string of the enviro,,nent after the effects of

the sentence have taken place (effect). Since the nature of the operating environment

allows uon-deterministic effects for particular condition and ;tction pairs, a variable

30

ismaintained in the rulewhich storesthe probabilityof the rule effectoccuring given

the condition and action pair.

Each rule also maintains a variable which stores the complexity of executing the

sentence given the current environment (precondition). This value is computed by

the Coordination and Execution levelsof the IntelligentMachine and issupplied as

feedback to the Organizer. New rules created through PLAY are added to the Rule

Store.

A mechanism called The Generalizer is included in the architecture and pro-

vides one form of symbolic learning. This mechanism removes unnecessary precondi-

tions of rules,so they can match novel situations.This extends the knowledge base

represented by the rule store,by allowing application of existing rules to different

conditions.

When a rule is generalized, it is necessary to compute, the complexity of the

generalizedrule under a novel situation. Also, when the nature of the environment or

the capabilitiesof the IntelligentMachine are altered,the coanplexityof executing a

sentence might change. A model must be maintained in the Organizer which extracts

the semantic relationshipsbetween symbols in rulesinorder to compute complexity of

sentence execution under a given set of environmental conditions. This connectionist

model iscalledthe Complexity Model.

As demonstrated by the literaturereview, planning is a search process which is

cornputationaUy expensive due to the sizeof the state space. In order to reduce the

sizeof the search space, the Organizer must be able to build up skillsfrom subsets

of tasks which move toward a user-defined goal. While many approaches to skillor

schema formation have been based on top-clown symbolic learning approaches which

require large amounts of a prioriheuristicknowledge, itisdesirablefor the Organizer

to develop some of this capability from its own emergent knowledge base. To do

this,another connectionist network calledthe Goal-Direct Boltzmann Machine

istrainedon the rulesin the rulestore to develop semantic relationshipsbetween rule

conditions and effects.After trainingthisnetwork, skillscan be formed by presenting

the Organizer with problem subgoals, and using the network to extract small chains

of low complexity rules which achieve the subgoal. These chains form skillswhich

can be added to the rule store and used in planning.

Planning involves the proper selectionof rulesand skillsfrom the rulestore which

cause the abstracted environment to transform from an initalstate to a goal state.

Recognizing that the conditions and effectsof rules axe isomorphic to nodes in a

graph, and sentences are graph arcs, the Planner uses a graph search technique to

find a low complexity, high likelihoodof success text of sentences which achieve the

goal state.This text isthen transferredto the Coordination levelfor plan execution.

In short,the Organizer followsthe followingprocedure:

I. Training: Using the PLAY algorithm, experiment with the actual or simulated

environment: PLAY builds an initialbase of rules describing the capabilitiesof

the IntelligentMachine.

31

• Generate sentences and send to Coordination level.

• Observe the probablistic effect of sentences on the environment.

• Form rules about the abstract environment.

• Receive a measure of sentence complexity from the lower levels of the

system.

• Store these feedb_k measures in the Complexity model.

2. Knowledge abstraction: Expand the capabilities of the Organizer rules by ab-

stracting knowlege:

• Generalize rules to apply to similar, but untested cases.

• Store rule effects in the goal-directed Boltzmann Machine.

3. Goal training: Generate skills through use of the goal-directed Boltzmann Ma-

chine.

• Receive a goal state from a user.

• Provide desired state changes as input to goal-directed Boltzmaml Ma-

chine.

• Discover low Entropy rules which move toward goal.

• Store the sequences of rules and effectsin the skillstore.

4. Planning: Use a search technique to find a path from an initialstate to a goal

state.

• Receive a goal state from a user.

• Search the rule and skillstore for a path of sentences from the initialstate

to the goal state which minimizes cost.

• Ifthe costof the cheapest path isexcessive,eitherfailor enter goal-directed

exploration.

• Ifthe cost of the cheapest path isacceptable,send the text of sentences to

the Coordination leveland observe execution.

A pictureof the system and itsenvironment isprovided in Figure 3.1 with appro-

priate command and feedback paths.

t

3.3.1 Basic Mechanisms and Operation

The basic mechanisms of the Organizer are:

I. The rule store.

32

2. The complemty model for sentence execution.

These mechanisms and their method of operation allows the Organizer to build

up a rich knowledge about the capabilities of an InteLligent Machine. Together, these

units provide both syntactic and semantic systems which allow the analytic formation

of optimal plans based on the minimization of a cost criteria when combined with

the advanced mechanisms of the Organizer. The next sections describe the function

of each unit, and how it operates.

The Rule Store

The rule store contains a list of condition/action/effect triples and forms the main

syntactic mechanism in the Organizer. The following definitions are needed:

Let R = (---, 5"].,T,H, PT) define the rule store. The rule store is then the set of

5-tuples where _. represents the set of conditions, _ is the set of binary sentence.s,

and T is the set of effects. The value H > 0 is the feedback entropies from the

Coordination level for a particular state/binary sentence pair. The values 0 < PT

< 1 represent the probability of the condition/action pair causing the given effect.

The assignment of these values will be discussed in depth later in another section. A

particular rule Ri is in the rule store if/?.i e it.

Each-:, _--"is a string .. , where is and isc Ueda field.
Note that the length of _ is M, the length of the state string Q. If a particular field

in a string _ is 0, that field is said to be ezeluded from the condition. If a field is 1,

that field is said to be included in the condition. If a field is #, that field is said to

be don't care.

v/M-' (0,1,#). Note thatSimilarly, each Ti e "r is a string (v/°,u_, .-. ,) where _/ e

the length of Ti is M, the length of the state string Q. If a particular field in a string

Ti is 0, that field is said to be excluded from the effect. If a field is 1, that field is

said to be included in the effect. If a field is #, that field is said to be dependent on

the condition.

Each _i e _ is a binary string 0 1 , a_i -1) where N is the sum of the numberO"i _ O"i , •..

of actors, actions, direct objects and indirect objects defined for the Organizer. If a

field in El is 1, that field is said to be included in the binary sentence. Else, the field

is excluded from the binary sentence.

The binary sentences _ are a direct one-to-one and onto mapping of the sentences

S. _ can be separated into four disjoint sets, each corresponding to the actor, action,

direct object and indirect object sets of S. Let II• IIdenote the number of fields in a

string. The first IIA.I[fields of a binary sentence E_ are mapped to the actors, the next

]lvll fields of Ei axe mapped to the actions, etc. If a particular field _,/k (k < HAll - 1)

is set to 1, then actor at, is represented in Ei. Note that exactly one actor, one action,

zero or one direct objects and zero or one indirect objects is included in any E_.

For example, given the following sets:

A = (ARM1, ARM2)

33

V - (MOVE, GRASP, RELEASE)

D = (BLOCK, BALL, TABLE)

I = (BLOCK, BALL, TABLE)

Then the sentence st = (ARM1 MOVE BLOCK TABLE) would be mapped to

the binary sentence at -- (10100100001). Here, ARM1 is in the sentence so the first

field of the binary sentence is included. Since ARM2 is not in st, the second field of

the binary sentence is excluded, etc.

For convenience, rules will appear as:

such as:

i00#0100#11000100100101#00#000 tO

A rule is active if all of its conditions are matched. The conditions of a rule 1_

are matched if for a given environmental state Q, the Hamming distance _x(--_,Q) --

0. Note that the Hamming distance between a dontt care field, #, in -_ and a 1 or 0

in the corresponding field in Q is 0. The active set is the set of active rules.

A rule can fire when it is active. If a rule is chosen to fire, the binary sentence

portion of the rule is mapped back onto the sentence grammar defined over S. The

sentence is then passed to the Coordination level for execution.

The structure of the rules is very similar to the rules us(,d in Classifier Systems.

Both use a trinary algebra (0,1,#) for representing conditio_ strings. Rules in both

systems contain a sentence portion, which in Classifier systems is called the rule

message. The rules are also similar to those in most forward chaining expert systems

such as OPS5 [BFKM86]. In both Classifiers and forward chaining systems, the rules

attempt to match a condition portion with a current state message, and then produce

an action to the system or environment as output. However. the Organizer rule also

contains an effect portion which provides a model of the environmental state after

execution. Because of this portion, the results of a rule firing are known a priori to its

execution. This allows for efficient planning, as will be described later in this work.

The Complexit_, Model

As discussed previously, the Coordination level of the Machine provides a feedback

value to the Organizer which reflects the complexity/difficulty of executing a sentence

passed from the upper to lower levels. This feedback value is called Hc(s) and is the

entropy of executing the actions called for by sentence s in the current environment.

This value is computed by the lower levels either through analytic means at the

Coordination level, or by control performance at the ExecuLion level. To minimize

the cost involved with this computation, it is necessary to model in the Organizer the

value Hc(s) due to the execution of sentence s in the current ellvironment. This model

34

should function as both 1) a database for recalling complexities of past state/sentence

pairs; and 2) a predictor of complexities for state/sentence pairs not yet executed.

This model performs the "compatability evaluation" described in [Val86]. It pro-

duces a measure of complexity for binary sentences based on co-occurance probabili-

ties of primative events developed over repeated presentations.

The predictive nature of this model will allow the Organizer to discard certain

classes of sentences which it has learned perform pooly over past experience. This

generalization across similar sentences requires some semantic knowledge about the

co-ocurrance of actor, action, direct objects and indirect objects. Based on these

criteria, a connectionist structure will be used to form the complexity model.

For input, the state of the abstract environment and the binary sentence will be

place on the nodes of the network. The Energy of the network will then be calculated,

which is equivalent to the trained complexity of the sentence in the given environment.

Let 8c - (L:, }42) be a connectionist network. Let node levels L: = (L_, LQQ,LA,

LAy, Lv, LVD, Lo, Lvz, Lt). Each node level is defined as follows:

Lq = (n_,n_, ... ,ng-_) whereM is the lengthofstate vectorq.
L_Q= (n_,n_,... ,_3Q)where(i < j < M - 1). Note:Thenumberofnodes

in LoQ given by Ilqqll = IM)o_M-t)2

LA - (n°, _,.--, n_A"-_) where flAIl is the number of actors.
/,AV = (n°V, o2 .. _SnAy, • ,nAy) where (i < IIAll, J < IlVll). Note: The number of

nodes in LAy is denoted]]AVI] and equals the number of actors multiplied by the
number of actions.

Lv = (n°,n_,, ...,n_ vll-_) where [[Vl[is the number of actions.

LVD oa o2 ij= (nvo, nvo,"" , nvv) where (i < IlVll, j < Ilnll). Note: The number of

nodes in LVD is denoted IIVDIIand equals the number of actions multiplied by the

number of direct objects.

Lo - (n_,nb, .--, n_o,-_) where IIDIIis the number of direct objects.
= /_01 _02 15Lvt _"vt, "vr,'" ", nvt) where (i < Ilvll, J < II111).Note: The number of nodes

in Lvr is denoted [IVIII and equals the number of actions multiplied by the number

of indirect objects.

Lt = (n_,n_,-.-,n_ t"-_) where IlIll is the number of indirect objects.

For simplicity, the nodes can also be indexed £ = (no, n_,..., nllCll) where I1£11-
M + Ilqqll + IIAII + IIAVll + IlVll + IIVDII + IIDII + llXqll+ IlIII.

Any node, n i 6 (0, 1). The value of ni is called its activation.

W is called the weight matriz for _. W is of size (11£11× II£11). Eac_ element

w_j e YV is called a weight between node i and node j. The following rules hold for

weights in _:

_. IIw,_ll_<_.o.

2. Some weights are fixed at 0.0. Other weights can vary between -1.0 and 1.0.

35

3. If wij is fixed at 0.0, there is no connection between nodes nl and nj. Else, a

connection exists between nodes ni and nj.

For the network B_, the followingweight assignments are made:

,

.

3.

4.

5.

6.

7.

8.

9.

For any nodes n_ and n_, wq is fixed at 0.0 for X e (Q, QQ,A, AV, re', VD, D, VI, l).

This indicatesthat there isno connection between any two nodes on the same

level.

For any nodes n_ and

For any nodes n_t and

For any nodes n_/and

For any nodes n_, and

For any nodes nb and

For any nodes n_/and

n_Q, wq is fixed at 0.0.

nJav, wq is fixed at 0.0.

n'iav, wij is fixed at 0.0.

n_ D, wlj is fixed at 0.0.

n_ D, wlj is fixed at 0.0.

n_ z, wij is fixed at 0.0.

For any nodes n_ and n_,z,wq isfixed at 0.0.

All other weights can vary between -I.0and 1.0.

A diagram of this network is provided in Figure 3.2.

A connection between nodes ni and nj is active if wli is not fixed at 0.0, ni = 1,

and nj = I.

As part of the Intelligent Machine, the network is defined in terms of the analytic

model. The output of Bc is defined as the Execution Complexity of a Task given

the State of the Environment and is abbreviated H,(st) for sentence s_. Therefore,

we define the Hn(si) r'tlrll V"llcll This is similar to the energy definition-- L._i=0 _.#jffii Wijninj.

for Boltzmann Machines defined in [HS86]

Training the complexity model

The method for adjusting YY over repeated trials is called training the network.

The following procedure is used to train the network to produce the complexity of a

binary sentence Z_ given Z_ and Q as input. We assume that Hmax is the maximum

complexity value and Hmia is the minimum value.

Given a state vector Q, a binary sentence _i, and a measure of complexity from the

Coordination level, He(s0, where st is a sentence mapped from the binary sentence

1. For each field qi in Q, if qi = 1 then set n_ = 1.

36

2. For each field

3. For each field

4. For each field

.- . . i ¸

o'i in E_ where (0 <_ i <_ HAll - 1), if o'i - 1, then set n_4= 1.

i in E, where (HAll < i _< Ilvll- 1), if _ - 1, then set n_ = 1.

ai in Ei where (llVll < i ___IlDll- x), if ai = 1, then set n_ = 1.

5. For each

6. For each

7. For each pair

8. For each pair

9. For each pair

field cri in Ei where (IIDII< i < N - 1), if cvi = 1, then set n:r = 1.

• " ij
pair of nodes n_ and n_ (i < j), if both nodes equal 1 then nQQ = 1.

• " ij
of nodes nh and n_,, if both nodes equal 1 then nay -- 1.

• " ij
of nodes n_ and n_, if both nodes equal 1 then nvv = 1.

• " ij
of nodes n_, and n'}, if both nodes equal L then nvI = 1.

10. Set allother nodes to O.

II. Compute the Complexity from B_, Ha(st) x--llCll_,l!"IJw_jn_nj."-- /-_i-----O4..,_----I

12. Compute b'I-I = Hc(sl) - Hn(sl).

13. For each and every non-fixed wlj e W: If 6"H > O,

If6H < O,

6"H

tiwq = a(1.0 - wiJ).Hmax _ Hmin rtinj

6H

Swlj - "/(1.0 -t- wiJ) Hmax _ Hmln ninj

Where 0 _< a, 7 -< 1.

Each iteration of this algorithm is a training step.

Over repeated iterations, the output of the network Hu(sl) should converge to

Hc(si). The following theorem is useful:

Theorem 3.1. For a connectionist network of type B_ with a training procedure

given above, let I equal the number of active connections in E¢ for a given sentence

s,. If a < _1_ then Ilmll before a training step is larger than 116HII after a training
SH

step• Similary, 7 < --1""

Proof: Let us first examine the case where gH > 0. In this case, Hc(sI) > H,(sl).

For the updating step, we have:

5H

5wij = a(1.0- weJ)Hmax - Hminnlnj

The maximimum value (1.0 - wlj) can obtain is 2.0, since -1.0 < wij < 1.0. The
6H

maximum value Hmax_Hmi n can obtain is 1.0. Thus ,Swij < 2a. Then, the maximum

37

change in the output of the network due to a training iteration is 2 x l x a, since only

I weights are updated.

We must show that [[He(st) - (H,(si) + 21a)[[< IlH (sl) - Hn(st)[I.

We know He(si) - Hn(si) > 0. Assume Hc(si) - (Hn(si) + 21a) :> 0. Then we

must show that He(sl) - Hn(sl) - 21a < Hc(s|) - Hn(sl). This is true if 21a > 0

which is always the case.

Now assume He(si) - (H,(sl) + 21a) < 0. Then -Hc(sl) + (Ha(s|) + 21a) > 0.

For -He(si) + (H,,(s|) + 21a) < He(si) - Hn(s|) to be true, a < _i_-. The proof is

analogous for 7.

The above updating scheme and supporting theorem provide a method for succes-

sive adaptation of the output of the network to mimic the feedback signal provided

by the Coordination level. This adaptation is similar to gradient descent of the error

for a given sentence sl by modifying the weights of the network.

The constraints on a and _, given by the above theorem are somewhat restrictive.

It is possible that the training routine will reduce the output error using larger values

of a and 7. The important consideration is the distance of the current weight value

to the shunting value (-1.0 or 1.0) which may account for a smaller output change,

and allow larger constant values.

Extracting the complexity of a sentence

During execution, it becomes necessary to determine the complexity/entropy of a

sentence without going through an entire training step. To extract the complexity of

a given sentence s_, one must first map the si to the bina_-y sentence Ei. Then, for

a given state vector Q, the complexity of s; can be found by executing steps 1-11 in

the training algorithm. The complexity, or entropy of si equals Hn(sl).

A priori inhibitory connections and weights

It may be desirable to inhibit the execution of certain tasks or sets of tasks based

on a priori knowledge about the nature of the tasks under particular environmental

conditions. The Machine user should be able to encode this _innate" knowledge into

the complexity model.

Assume we have two nodes hi, nj which should not be asserted together (i.e

inhibited). The user should set wii - 1.0 and not allow this weight to be modified

during training. By fixing this weight at 1.0, the complexity of any task requiring

both nodes active will be high.

Discussion of the complexity model

With the formal model defined, a short discussion is necessary to provide intuitive

insight to the model. The complexity model is based heavily on the Boltzmann

machine architecture, and uses the energy function to extract, the output value of the

38

network. The values of the nodes can be either 1 or O, me._ning on or off. For this

example, the weights ranged from -1.0 to 1.0. To maintain uniformity with other

parts of the Organizer, itis necessary to change the structure so that the weights

range from 0.0 to 1.0

The node levelsof the model are segmented in a way which allowsan easy mapping

from the current state vector and a chosen sentence to the network. Each node in

levelL 0 isassigned the corresponding bit value of state vector Q. Sirnilary,the node

in LA isasserted which corresponds to the _tor in the given sentence,the node in Lv

isasserted which corresponds to the action in the given sentence, etc. These nodes

are calledthe visiblenodes of the model.

The levelsLQQ, LAy, LVD, and Lvz allow the assertion of pairwise combinations

of states,actions and actors,actions and directobjects, actions and indirectobjects,

respectively.These nodes allow the machine to form boolean ['unctionsbetween nodes.

Itisimportant to note that these nodes provide more than just the _AND" function.

Through repeated training,the combination of these paired nodes with nodes of the

other levelsallows the formation of such boolean functions _ _XOR', _NOR', etc.

These nodes are called the hidden nodes of the model.

Similar to a proportional controller, the weights of active connections axe trained

to reduce the error between the current output of the network, and the desired output

of the network. The theorem presented statesthat an individual trainingstep willnot

increase thiserror for a particularsentence. This is import,_ut for stable operation.

The idea behind this training technique isthat over repeated presentations,certain

active connections willalways lead to very good or very bad values of complexity.

These links will tend to shift toward -1.0 or 1.0 respectively. If the weights are

restrictedto the range of 0.0 to 1.0,the linkswillshiftin ,_similarmanner to these

bounds. Other linkswilltend to oscillatein the middle since the output of the network

when they axe active ranges over the complexity scale.The effectof these links tend

to die out over repeated presentations. In other words, the network self-organizesto

find pairwise node combinations which tend to lead to bad performance, and ones

that lead to good performance, and these nodes become the major influencingfactors

in calculatingthe network output.

It is important to see why this technique is used for training as opposed to one

like backpropagation [RHW86a, RHW86b] or the Boltzmana machine training algo-

rithm [AHS85]. Backpropagation requires an a prioi knowledge of a particular string,

and the output of the network given that string as input. All of these paired values

must be k_own before the net is trained. The same type of knowledge is required by

the Boltzmann training technique. In contrast, the complexity model learns through

repeated experience over the course of execution of the Organizer, and does not need

to know all value pairs ahead of time (which is especially useful, since these values

axe not available). Also, the technique used to train the complexity model is called

_Reinforcement Learning", because we are training a network response by providing

a reinforcement signal. Backpropagation and the Boltzmann training technique both

39

use "Supervised Learning". A detailed description of the differences between super-

vised and reinforcement training methods is provided in [Wi188 I. Therefore, it can be

trained with or without a teacher.

An example of a complexity model

To demonstrate the effectivenessof this model, several simulations are presented.

The environment consistsof a table and two objects labeled OBJI and OBJ2. The

Machine consistsof a robot arm and gripper which can either pick an object up or

put an object down (GRASP or RELEASE). In the simulations, the Machine must

learn the following:

I. Itiseasy to grasp an object when nothing isin the ga'ipper.

2. Itis easy to releasethe object which isin the gripper.

3. It isdifficultto pick up any object when one is already in the gripper.

4. Itis difficultto releasean object unlessitis in the gripper.

The model was built as follows:

I. The L@ levelconsisted of 4 nodes:

(a) n_ = OBJ1 in GRIPPER

(b) n b = OSJl on TABLE

(c) n_ = OBJ2 in GRIPPER

(d) = oBJ2onTABLE

2. The La levelconsisted of I node: n° = ARM.

3. The Lv levelconsisted of 2 nodes:

(a) n_, = GRASP

(b) n_, = RELEASE

4. The Lo level consisted of 2 nodes:

(a) ,,°o= OBJ1
(b) n b = OBJ2

5. For thiscase, the Lt levelwas unnecessary and not modeled.

4O

Including the paired levels (L_Q, LAy, LVD) the network consists of twenty-one

nodes and eighty-four modifiable connections. The weight matrix is assigned as dis-

cussed in the previous section. Each element in _/was initialized to 0.0.

In the firstsimulations, the feedback He(s) is 1.0 for difficulttasks (tasks 3,4

above) and 0.0 for easy tasks (tasks 1,2 above). The goal of training is to match

the output of the network with the provided feedback for every valid state/sentence

combination.

Figures 3.3a - 3.3ishow the output of the network for severaltest sentences over

200 training steps with a, _f= 0.05. Figures 3.4a - 3.4ishow the output with a, q,=

0.15.

Determination of Hn(s) required 190 additions. Each training iteration required

update of the 84 weights. After computing 5H, each weight update requires one

addition/subtraction and one multiplication.

The simulation resultsdemonstrate that the network isable to learn the correct

feedback values during the limited number of presentations. It isimportant to note

that 200 presentations representthe totalnumber of sentence instances the net trains

on. In other words, for 200 presentations,each of the twelve valid sentences is pre-

sented to network an average of 16 times. This isa very small number of presentations

when compared to techniques like backpropagation.

As shown in the simulations, with a, _ -- 0.05, the network is able to provide

correct responses within 5 percent to the test cases in about 165 training steps. This

corresponds to about 14 presentations of each possible sentetlce to the network. With

a, q, -- 0.15, the network performs much better. It responds within 3 percent to the

test cases in about 100 training steps. This averages to about 8 presentations of each

sentence to the network. After 120 presentations, the test case response is about 100

percent accurate.

The second simulation demonstrates a case in which non-binary responses are

provided as feedback. In this case, we try to model OBJ2 as a heavier object then

OBJ1. To represent this, the feedback provided when grasping OBJ2 is not 0.0, but

0.2. Again, the simulation results show in Figures 3.5a - 3.5i that the network is

successfully able to mimic the feedback values. After 120 training steps, or about 10

presentations of each of the twelve sentences, the output of the network is within 5

percent correct for each of the test cases. After 140 steps, it is within 2 percent of
the correct values.

Operation of the Basic Mechanisms

The rule store and complexity model form the basic mechanisms of the Organizer.

These mechanisms can be viewed as the primary building blocks required to provide

syntactic and semantic structure to the system. It is within these mechanisms that

most of the knowledge within the Organizer is learned and maintained. The next

section describes the operation of these building blocks, and how they work together

to form a base from which plans can be constructed.

41

PLAY All_orithm (Non-Generalized Rules)

The purpose of the rulestoreisto develop a database of condition/effectrelationships

for sentence execution by the Intelligentmachine. Each rule Ri e R definesthe effects

T_ of executing sentence _ when the environment isin a state which roaches --_.The

question arises:How isR built?

Intertwined with the rulestore isthe complexity model 6c. For a given sentence

s_ in state Q, Bc must develop a representation for the feedback complexities Hc(s|)

provided by the Coordination level.The question arises:How axe relevant matched

sentence/state pairs presented in order to effectivelytrain/3_?

These questions axe answered by an algorithm called PLAY. PLAY forces the

development of rules in the rule store, and provides legitimate sentence/state pairs

for the complexity model. Through interactionwith an abstracted non-deterministic

environment, PLAY allows the development of rules which have probablisticeffects

and form a robust syntacticenvironmental model.

PLAY proceeds in thismanner: Under the current abstracted environmental state,

the Organizer randomly picks a sentence to execute. The probability that a given

sentence isselected may be influenced by the user of the Machine. The sentence is

then passed to the Coordination levelof the IntelligentMachine and isexecuted in

the environment, ifpossible.The Organizer receivesthe new abstracted environment

stringand the complexity ofexecution as feedback. Ifnecessary,a new rule isformed

by concatenating the precondition (current abstracted environmental string),the bi-

nary sentence and the effect(new abstracted environmental string).The complexity

value of the rule isassigned and the probabilityof the preco,ldition/sentencecausing

the given effectisupdated. PLAY isdescribed in more detailas follows:

Given an initialenvironmental state Q, a rule store R, a complexity model/_c,

a maximum complexity threshold/_hr,a new rule generation probability Pn, a set of

probabilitydensity functions PA, Pv, Pz),PI which are the probabilitiesof selection

a particularactor,action, directobject and indirectobject, respectively,for a newly

formed sentence, and PR, the probability density function of selectinga particular

rule from the active set:

1. Find the active rule set/_,_e: (VR_ e R : A(Q,--_) = 0). If the active rule set

is empty, go to step 2a.

2. Randomly selecta value p in (0..I).If p < p_ a new rule isgenerated as follows:

(a) Generate a particulara_ e A according to PA.

(b) Generate a particular v,_ e V according to Pv.

(c) Generate a particular d,, e D according to Po.

(d) Generate a particular i_ e I according to P_.

(e) s,, is formed by the set (an, vn, d_, in).

42

(f)
(g)
(h)
(i)

(J)

(k)

(1)

(m)

Map s,, to the binary string _.

Transfer the sentence s,, to the Coordination level for execution.

Receive Hc(s,) as feedback from the Coordination level.

Find the subset of rules in Rf_i_e which have the binary sentence _,_:

R'_,_ e = (VR_ _ R_,,o : r_j = _,).

If He(sn) > 0n the sentence could not be executed. Update the complexity

model and set H = I'Ic(sn) for all Rj e R_i,,e. Go to step 2.

If He(sn) _< 0n, the sentence was successfully executed. Observe the ab-

stracted state vector Q', update the complexity model, and set H = He(sa)
for all R i e R'_i,,.

IfVRi e R_i,e, A(Tj, Q') _ 0, then create a new rule R_ by concatenating

Q, I_, and Q'. Assign H - Hc(sn) for R_. Else, let R" - (R/ e R'_=_,,,
= 0).

Update the effect probability values P'r for all rules Rj e R'_=_W and com-

pute P'r for/F_.

(n) If new, add R_ to R.

3. If p > p,, an existing rule is selected from R:

(a) From R_i_ randomly select a rule R, according to PR.

(b) Map _,o to so. Transfer s, to the Coordination level for execution.

(c) Receive Hc(ss) as feedback from the Coordinatioa level.

(d) Find the subset of rules in R_ti_ which have the same binary sentence as

' = (VRi :R,: R,,cti,,. _ r-,.i= r_,).

(e) If I-Ic(ss) > On the sentence could not be executed. Update the complexity

model and set H - I'Ie(s.) for all Rj e R'ai,e. Go to step 2.

(f) If He(ss) _< Sn, the sentence was successfully executed. Observe the ab-

,stracted state vector Q', update the complexity model, and set H - I-It(s,)
I

for all R i e R,_i,,,.

(g) IfVRi e R_ai,,, , A(Ti, Q,) _ 0, then create a new rule R" by concatenating

Q, I], and Q'. Else, let R'_ = (R i e R',,i,,, : A(Tj,Q') = 0).

(h) Update the effect probability values Pv for all the rules Rj e/i_i_, and
compute P_. for R_.

(i) Assign H = He(as) for R_.

(j) If new, add R'_ to R.

4. Letq =q'.

5. Go to 1.

43

Updating the effect probability values

The PLAY algorithm isresponsiblefor updating the effectprobabilityvalues PT for

the all R# e R',ctiv,.These values represent the probability of a particular _ and E

pair causing a specifiedeffectin T. The probabilityupdating method can be likened

to an attempt to revise a prediction of the outcome given a particular input to a

system and a particular action by the system. This type of probability modeling

scheme has been dealt with extensivelyin the fieldof Stochastic Learning Automata,

and provides one method for updating the effectprobability values.

Fu and his colleagues [Fu71, FL69a, FL69b, Fu67] were among the firstto intro-

duce stochastic automata to the control literature.Excellent reviews of the fieldof

Stochastic Learning Automata axe availablein [NT74, ME70I. Borrowing from these

theories,the probabilityupdating scheme is:

Given VR i e R_**iv, , the active rule]V_,t, (R# _/V_), and some constant 0 < # < 1:

1. If R:**i,_ , is empty then PT = 1 for]_. Else execute 2,3.

2. For each/{i, let PiT - PiT ° #PiT-

3. For R', letP_ = P_ + Ej_lls_,.,ll#PIT"

This technique isknown as the Linear Reward-Penalty scheme (denoted LR-p).

It subtracts probabilty from rules which have e_ects that did not occur, and adds

the total subtracted probability to the elect probability for • rule in which the effect

did occur. The LR__, scheme is known to be expedient. As shown in [CS67], LR_p

schemes work well in non-stationary environments (ones in which effects of actions

can change over time). Other methods which axe e-optimal tend to lock onto certain

actions, and lose their ability to change.

Other approar.hes may be used to update the effect probability values. Stochasic

Approximation is also very appropriate to this type of model. Frequency of occu-

rance is another method which may be suitable for particular implementations of the

Organization level.

Updating the complexity model

The PLAY algorithm calls for the complexity model to be updated with each tested

sentence. This is accomplished using the complexity model training method given

previously, by providing the current binary sentence and Q as input, and adjusting

the weights according to the feedback response from the Coordination level.

A priori rules

The design of the Organizer allows the user to encode a priori rules and place them

in the rule store, if desired. If the pre-encoded rules have im:orrect actions, they will

44

'l

perform poorly in experimentation and their effect probabilities will decrease. If the

pre-encoded rules have correct actions, they can be used in planning along with rules

developed during PLAY.

Discussion of basic operation mode

The basic operation mode described above by the PLAY algorithm allows the Orga-

nizer to build a large database of valid rules which can be applied to the environment.

The rules in the rule store axe very similar to those found in expert systems or pred-

icate cMculus planners with three important caveats. First, the rules in the rule

store model the abstracted environment by direct interaction with the environment.

A user does not need to enter the rules by hand in order to create the functions

of the system. This eliminates Minsky's [Min61] "frame problem", which is caused

when user-defined rules do not handle unexpected situations; on the contrary, in the

Organizer system, the rules are created by the situation.

The second caveat is that the effects due to the rule application (firing) are prob-

ablistic. This means that executing a sentence under some state Q may lead to effect

Tt in 90 percent of the trims and T2 in the other 10 percent of the trials. To repre-

sent this, the vMue PT is maintained for each condition/sentence/effect triple. Expert

systems and predicate calculus based planners usually accout_t for only deterministic

actions.

The third caveat is that the rules in the Organizer maintain a cause/effect model

which describes the state evolution of objects due to actiolls by the Machine. This

will facilitate goal planning as discussed later in this work.

The intuitive notion behind PLAY can be likened to an infant experiencing the

world for the first time. By attempting to perform actions in the world, the infant

determines what acts he can perform using his arms, legs, fillgers, etc., and how hard

it is to perform those acts. Also, the infant discovers how he can manipulate objects

in his world, and how he affects the world through his actions.

Similarly, PLAY allows the Intelligent Machine to experience its abstracted world.

It attempts to perform actions in its environment and receives feedback from the lower

levels which analyze the difficulty of performing the tasks. This difficulty measure

is stored in the rules, and is also applied to the complexity model which is used by

higher reasoning when attempting new tasks. By interacting with the environment,

the machine formulates new rules which reflect the changes in the world due to rule
execution. Old rules can be modified when their effects on the world become more

certain or less certain. Over time, the Machine builds up a robust store of these

concepts.

It is now necessary to describe the PLAY algorithm in co,_ceptual terms. Initially,

the set of allruleswhich can be used in the current environmental state axe gathered.

This is called the active rule set,or /?_cti_e.Ifno rules rna_ch the current state,or

a new rule generation has been selected,we proceed to fornlulatinga new rule. The

45

value p allows the Organizer to build new rules, and experiment with old rules during

PLAY mode.

If a new rule must be generated, we select an actor, action, direct object and

indirect object according to prespecified probability density functions. If the pdfs

are uniform, the sentence is randomly generated. A non-uniform pdf allows a user

to guide the Organizer during PLAY to discover certain types of rules which tend to

contain a particular actor, action, etc. Therefore, a user can "supervise" the actions

of the machine during PLAY, if desired.

The newly generated sentence is passed to the Coordination level and is exe-

cuted. At the same time, the Organizer finds all the rules which have the same

condition/sentence pair and calls this set R'_i,, _. The determination of this set is

necessary in order update the complexities, H and effect probabilities, P'r of the

rules. The set R'ai_, contains all the experienced effects of _,xecuting the sentence in

the given environmental state.

Based on the feedback value, He(s), the Organizer determines whether the sen-

tence was successfully executed. If it wasn't, the complexity values of all the active

rules with the same sentence are updated. Updating all rules in R'_i_ _ reflects the

fact that the complexity value describes the difficulty of executing a sentence in a

particular state. Therefore, all rules which have the new sentence and the given state

must have their complexities modified. The complexity model B_ is also trained with

this information. If the newly formed sentence is the only member of this set (no

other rules in R'_ai_¢), it is tossed away and the process begins again.

If the sentence can execute, the complexity values of the ,.t, les in Rc,ai,, e are updated

to the feedback complexity, and/3c is trained on this data. The new environmental

state vector, Q_ is observed. If the rule formed by combining the old state, sentence,

and new state is not in the rule base, it is added. The prol_abilities for all members

in R'_,.a,,, are then modified to reflect the effect caused by _pplying the sentence in

the old environment. The rule with the correct effect has its probability value P'r

increased, and all other rules in .l_aetiv,. have their values decreased. The process of

PLAY then begins again.

If the creation of a new rule is not called for, the process is somewhat similar.

Of the rules in the active set, one is selected for execution based on the probability

density function PR. If P/_ is uniform, each rule is selected with equal probability.

However, the user can adjust PR to guide or supervise the system to execute particular
sentences and [earn the effects of certain classes of sentences.

As described above, the sentence is passed to the Coordination level, evaluated,

and in similar fashion, the rule complexities and probabilities are updated and the

complexity model is trained. If a new environmental sta_e is found, a new rule is

formed and added to the rule store.

The PLAY operation should continue until the user _tecides the Machine has

developed a rich enough model of its environment. It is i_nportant to realize that

during PLAY, the Machine may be interacting with a siK_lttlator providing all the

46

responses of the real world. This is one way to prevent the Machine from carrying out

rules which have disastrous ends. Another method is through the adjustment of the

rule selection probabilities, which allows supervision of the rules that the Organizer

chooses to discover.

3.3.2 Advanced Mechanisms and Operation

Given a complete descriptionof the basic mechanisms and the basic method of op-

eration, it is possible to describe the advanced structures in the Organizer model.

These advanced mechanisms facilitatethe formation of plans by abstracting knowl-

edge maintained in the basicmechanisms without destroying the originalinformation.

The advanced mechanisms in the Organizer are:

I. The generalizer.

2. The Boltzmann Machine for directed exploration.

The next sections describe the function of each unit and how itoperates.

Symbolic Learnin G and The Generalizer

Many researchers have developed learning techniques for expanding and generaliz-

ing knowledge from rules in a rule base or from the examination of rule execution

lAnd83, Car86, DeJ86]. Since the Organization level maintains a rule base of condi-

tion/sentence/effect rules, many of these symbolic learning systems can be overlayed

on the Organizer in the same manner they can be overlayed on a top-down symbolic

system such as STRIPS or ABSTRIPS. As an example, the Generalizer is presented

as one type of symbolic algorithm which removes preconditions from a rule in the
rule store to allow the rule to match more environmental collditions.

The PLAY algorithm is the basic mechanism used to explore the abstracted envi-

ronment and formulate new rules based on the effects that a particular binary sentence

Z_ had on a given environmental state. Through this exploration, PLAY forms rules

which are specific to a particular environmental instance Q. It is very likely that

many of the states in Q are not affected by the execution of _,. This implies that

certain qk e Q will not change state when a particular r,; is executed. Other fields

in Q are highly likely to change state, namely those which are within the locality of

effect as defined earlier. It would be helpful if only the relevant qk e Q (those Likely

to change state) were represented in rules, while the irrelevant fields were ignored.

Ignoring the fields outside the locality of effect allows a specific rule formed dur-

ing PLAY to become more general by allowing application of the rule to a host of

abstracted states. The rule could effectively disregard object states which do not

matter. For example, when sharpening a pencil, one is not concerned with a ball

in the corner of the room. Similarly, when getting a glass of water, the state of the

television is not highly relevent.

47

• :'o .IGI. ,,., _.,; :":_._

By increasing the generality of rules, one can also abstract knowledge into untested

domains. For example, if it turns out that filling a glass with water can be done with

the television on, the rule may be generalized to say that it is possible to fill a glass

of water regardless of the state of the television. In this exa_nple, generalization has

allowed the rule to apply to a state which has not yet been tested, namely when the

television is off. This type of generalization works because the television is outside of

the locality of effect.

The Generalizer works by removing preconditions of rules. This is done by creating

a rule which contains a _ (don't care) in a condition field which was previously

occupied by a 1 or 0. The new rule can now match environmental states which have

either a 1 or 0 for that field. The effect string is also modified to contain a # in the

effect field which is at the same location in the effect string as the modified condition

field in the condition string. This allows the 1 or 0 value which matches the # in the

condition to be carried over to the effect.

For example, given the generalized rule:

1110#/1010101/1111#

The condition of this rulematches environmental states:

11100

and

11101

The effect string when the environmental state is 11100 would be

11110

The effectstringwhen the environmental state isIII00 _vouldbe

11111

because the value assigned to the # fieldin the condition ispassed through to the

of the effect.

Before introducing the generalizeralgorithm, some notation isneeded. For rule

R_, letE_ be the substring of -_ which contains allthe states which observe object

k. Similary,letT_ be the substring of Ti which contains allthe states which observe

object I. Let _/la and TT/_Ibe the substrings of -_, Ti respectivelywhich do not

contain any stateswhich observe objects k or I.Also, Let Ra : (VRj _ R :# e -j).

This is the set of allgeneralized rules.Finally,let Rs = "-P_. This is the set of all

specificrules.

Then the following algorithm allows for the generalizationof rules:

48

A Generalization algorithm •

Given a rulestore R, a probabilitymatching threshold 0T and a complexity matching

threshold OH:

1. Select a binary sentence, Eh.

2. Map E_ to the sentence _t-

3. Let dl be the direct object and il be the indirect object of si. Let Wd be the

object in 12 represented by d_ and let wi be the object in 12 represented by i_.

For shorthand, these can be calledobjects i and d.

4. Let R_at_ -- (VRj e Rs : Ej = _k).

5. For each pair of rules R_, R6 in R_at_ determine if the following is true:

(a)-_----_ -_ - -_

(b) r_ = r:, V; = Z_.
(c) --?d,= Z?".

(d) Y.:_ = T=_/.

(e) I[Ha- Hb i[-- OH.

(f)]j p_... pb [I --<OT.

6. If true, do:

(a) Create a new rule R_, where -g - -_ except all fields _di __ #, Eg ----E_,

and Tg - T_ except all fields T_ d_ ffi #.

Ha+H b
(b) Set Hg = 2

P._I.+P b
(c)SetP_ = ,

(d) IfR_ e R discard R_.

(e)Determine the total support for Rg and check the validity of the general-

ization (as described below).

(f) If Rg isVALID, add Rg to R.

7. Go to i.

49

Default hierarchies and valid generalizations

Together, the general rules (those with # as fields)and the specificrules (those

without # as fields)form defaultrulehierarchies.As discussed in [HHNT86], a default

hierarchy isa set of ruleswhich contain general rulesof thumb, specificinstantiations

of these general rules,and exceptions to the general rule. By using an algorithm

such as the one above for generalization,general rules can be formed and applied

to domains where specificrules do not exist,while specificrules are available to

represent instantiationsof, and exceptions to the general rule. The main difference

between Holland's default hierarchy and thisversion of the Organizer's is that the

former isbuilt from general rules to specificinstances,while the latterisconstructed

from specificinstancesto general rules.Using the generalizationalgorithm above, the

Organizer's hierarchy islimited to two levels:I) Generalized rules for fieldsoutside

the localityof effectand 2) specificrules.

For the default hierarchy to remain effective,bad or conflictinggeneralizations

must be eliminated and existing ones must be updated to reflectnewly acquired

information. To do this,we must findthe set ofrules which support the generalization

and those which conflictwith it.The followingscheme allows for the removal of bad

or conflictinggeneralizationsby checking the validityof a generalized rule R_.

Given a rulestore R, a generalizedrule Rg, a generalizationacceptance threshold

0 _<0G _<I,a probabilitymatching threshold 0-rand a complexity matching threshold

0x, and a function INSTANTIATE(R,, R_) defined as follows:

1. For each field_k e 2, and _ e _.#,if_ = # then set _ - _, (0 < k < M- i).

keTg, if k=#thenset k =_,(0 </¢<M-I).2. For each fieldvg vg vg _ _

The followingis a testfor validityof a generalization:

i. Let R_c = (VR_ e Rs :E_ = Eg AND A(Ek, Eg) = 0). This isallthe specific

rulesin R which can be instantiatedfrom the generalizationRg.

2. Let TOTAL_,_,,._ equal the number ofspecificruleswh ichsupport R 9. Initialize

TOTAL°u_,,._ to 0.

3. For each R_ e R_,c, INSTANTIATE(R,,/_). If:

(a) A(T,, Tg) = 0, and

(b)UHs- Hz II< eB,and

(c) IIP - II< oT.

4. OR:

i i(a) ¢:0orA(-t-,,T.)# 0

5O

5. then TOTAL_t - TOTAL,_t + 1.

6. If TOTAL.u_t > 8G then the/?_ isVALID.IIR._II -

Discussion on generalization

Generalization allows a wide range of rules to be summarized in a generalized rule. In

a generalized rule, some fields which would normally be assigned 0 or 1 are replaced

by #, which is the don't care symbol. Any field in the condition containing a _ will

match a 1 or a 0 of the current state vector. Thus, a rule containing r_don't cafe's

in the condition can match 2" specificrules. The # symbol also allows knowledge

abstraction to new domains as mentioned previously.

One type of generalizationisaccomplished by the algorithm above. This method

generalizesacross object stateswhich are outside the localityof effect.Other types of

generalizationshould be researched and developed which allow for generalizationof

actions for affectedobjects,generalizationof effectsfor particular actions,etc. Also,

more research must be done to build a more robust default hierarchy, each levelof

which handles small exceptions to rules at the previous level.

The generalization process can run in the background while PLAY or PLAN is

being executed, or itcan run while the Coordination and Execution levelaxe executing

a particular plan since it can search the rule store without interferingwith these

processes. The background process willcreate new generalizations and remove bad

ones which willimmediately take effectin PLAY mode, or walt untilplan completion

during PLAN mode.

The algorithm presented above can be summarized as follows:

For a particular sentence, find allthe rules which contain the mapped sentence.

This is called P_Q,_, or the matched rule set. Obviously. since the sentences axe

identical,allrulesin the matched set have the stone direct and indirectobjects. For

each pair of rules, P_ and R_, in the matched set, if the fields relevant to the direct

object in the condition of R_ are identical to the fields in 1_ and the same holds

for the indirect object fields it means that the rules within the locality of effect are

identical. Next, if the fields which are not relevant to the _lirect or indirect objects

in the condition of P_ are identical to those fields in the effect of P_, it means that

the rule does not change states outside of the locality of effc,ct. If the same holds for

P_, and the complexities and probabilities of effect are similar across the two rules,

then the rules can be generalized. Generalization involves the replacement of all fields

outside the direct and indirect object fields with #. This i ttdicates that the field is

now don't care, and can match either a 1 or a 0.

The function INSTANTIATE generates a specific rule from a generalized one.

Given R,, the specific rule and R#, a general one, it sets all the # fields in the

condition of Rg to be identical to those in R,. The # fields in the effect part of a

generalized rule are direct mappings of the respective fields in the condition part.

This indicates that the rule does not effect those states, i.e.. they remain the same.

51

Therefore, the # fields in Rg are assigned the respective wlues from the: condition of

RE.

The validity of a generalization is examined by finding all the specific rules which

match the condition and sentence of the generalization, and counting the number

which support the effect, complexity and probability of effect denoted in the general

rule. Rules which don't have the same effect on the direct or indirect objects don't

negatively influence the support, because generalization conflicts mused by the gen-

eralization algorithm presented above are due in large to cases where locality of effect

does not hold. By computing the ratio of generalization support to total number of

matches, the validity of the generalization is assessed.

Example of generalization

We can use an extension of an examples presented earlier to demonstrate the gener-

aJization process.

Let:

12 - (Wo, Wl,w2,ws,w4) - (bottle, table, cabinet, wrench, arm).

Qo = (q°o, qlo, _, _, q_, qSo).

%0= 1 if bottle is full, 0 otherwise.

qo1 = i if bottle is hail full, 0 otherwise.

qo2 = 1 if bottle is empty, 0 otherwise.

qoa = 1 if bottle is on - table, 0 otherwise.

q_ = 1 if bottle is in - cabinet, 0 otherwise.

qos = 1 if bottle is carried - by - arm, 0 otherwise.

Q3= (qg,
qO = 1 if wrench is open, 0 otherwise.

q_ = 1 if wrench is closed, 0 otherwise.

q_ = 1 if wrench is on - table, 0 otherwise.

qaa = 1 if wrench is in - cabinet, 0 otherwise.

q_ = 1 if bottle is carried - by - arm, 0 otherwise.

Q=(q°o,q_,qZo,_,q_,qSo, q°,q_,_,_,q_).

Let A = (ao) = (ARM).

Let V = (Vo, v_, 02) = (MOVE, GRASP, RELEASE)•
LetD =I=f_.

Assume we have two rules present in the rule store which have been created

through PLAY. The first rule is:

01010010010/10101000000001/01000110010

denoting:

Condition: (bottle - hal f full, bottle - on - table, wrench - open, wrench - in -

cabinet).

Rule: (arm grasp bottle arm)

52

Effect: (bottle - hal f full, bottle - carried - by - arm, wrench - open, wrench -

in - cabinet).

and the second rule is:

01010001100/10101000000001/01000101100

denoting:

Condition: (bottle - hail full, bottle - on - table, wrench - closed, wrench - on -

table).

Rule: (arm grasp bottle arm)

Effect: (bottle - hal f f uU, bottle - carried - by - arm, wrench - closed, wrench -

on - table).

Assuming similar probabilities and complexities (within threshold margin), we

can generalize to create the general rule:

010100####0/10101000000001/010001 :ff::ff=##O

which replaces the fields relevant only to the wrench, table and cabinet by don't

care. It is important to note that since the arm was the indirect object in the

sentence, the field wrench - carried - by - arm could not be replaced. Intuitively, it

can be seen how the generalization allows the rule to apply to 4 specific cases where

only 2 specfic rules were needed to generate it.

A Boltzmann Machine for Directed Exploration and Learnin_

The PLAY algorithm provides an effective means for developing rules for the rules

store and testing these rules to determine the probability of effect and complexity val-

ues. The PLAY algorithm can be guided by the user to examine particular rules, but

it is not goal directed. It is important that the Organizer contain a mechanism which

allows for goal directed exploration of its actions in a manner which also minimizes

the cost of exploring. The goal-directed behavior is the topic of this section.

An introduction to the architecture designed to achieve this functionality is pre-

sented in [SM88, MS89]. A more formal, expanded version is presented here.

The function of this unit is to facilitate goal-directed exploration of the environ-

ment and determination of subgoals during planning. Since goal directed behavior

implies an attempt to pursue a method for modifying an objects state in a given way,

a goal-directed Boltzmann Machine, denoted Ba, is designed to model the change of

state of objects due to the execution of particular sentences.

A Boltzmann Machine is a neural network that provides associative recall by

minimizing the Energy, which is a measure of correlation between the asserted nodes

in the network. Placing the goal-directed Bolzrnann Machine within the framework of

the Intelligent Machine, we can define the Energy of the Machine as Knowledge about

a particular state (K). Since the minimization of Energy yields the correct associative

53

response, this maximizes the Knowledge about the state. Again, minimizing Energy

of the state of the Boltzmann machine maximizes the Knowledge about that state.

Training the goal-directedBoltzmann Machine modifies the weights of the network

and altersthe Energy function. Therefore, training updates the Knowledge in the

Machine over time, and can be defined as the Rate of Machine Knowledge (R).

The 89 network istrained to search for a binary sentence which produces the given

object state changes by maximizing the Knowledge about the state of the network.

Combined with information from the complexity model Be, thisunit willproduce low-

complexity sentences which have a high probability of cha_iging given object states.

These sentences will be used to form steps in subtasks or skills. Skills,which are

calledschema in ArtificialIntelligence,are sequences of sentences which achieve a

subgoal. Skillsallow reduction in planning search time by collapsing many search

steps intoa singleone.

Consider the earlierexample of a mobile robot which must use a wrench to shut

offa pipe. The goal of thisplan isto shut offthe pipe, while a subgoal might be "get

wrench from open tool-chest". It isthe responsibilityof thissystem to create a set

of sentences which can be combined to achieve thissubgoai. This set of sentence isa

skill.

To achieve these capabilitiesthe goal-directed Boltzmann Machine is prodded

with a desired set of object state changes on its input nodes. The Machine then

searches the sentence nodes to find the proper combination of actor, action, direct

object and indirect object which maximizes the Knowledge about the state. Using

this value, K, the analytic formulation allows the computation of the Probability

that the computed binary sentence is correct,and the Uncertainty associated with

the sentence given the desired state changes. Sentences with low uncertainty form

subtasks of the subgoal plan. A subgoal plan isdeveloped by using a graph search

technique with large predictivevalue placed on use of the discovered subtasks.

The goal-directed Boltzmann Machine isdefined as follows:

The 8_ network is divided into two parts,8 + and 8_'. The 8+ network models

object stateswhich switch from 0 to I in the state vector Q. The B/network models
stateswhich switch from i to 0.

For example, assume we wish to change from state Q = 10010 to Q -- 00011.

We see that qo changes from 1 to 0 and q4 changes from I) to 1. This information

about q0 would be input to 6_', while the information about q4 would be input to

8 +. It is the responsibility of 8 + to search for the binary sentence which maximizes

the Knowledge (i.e. minimizes the Energy) of the network given 00001 as input and

the responsibility of 8_" to search for the binary sentence which maximizes K given

10000 as input.

The 8 + and 8_" networks are each identical to the 8¢ vJ,:twork in terms of node

levels and connections, i.e.:

Let _ = (F, PV') be a connectionist network. Let node levels £ = (LQ, LQQ,L.4,

LAy, Lv, LvD, LD, Lvl, L[). Similarly, let B z = (£, W) be ;_ connectionist network.

54

Let node levels f.. = (Lq, L_Q,LA, LAy, Lv, Lvo, Lo, Lvr, Lz). The node level

description, £ is identical in 8c, 8 + and 8_'.

Because/3 + and B_" are Boltzmann machines, we use an Energy function to de-

scribe the individual output of these two networks. Energy output values must be

greater than or equal to 0.0 because negative Energy does not exist in such a system.

Therefore, we will restrict our weight values to:

0.0 _< w_i _< 1.0

The following rules hold for W in B+ and B_':

1. Some weights are fixed at 0.0. Other weights can vary between 0.0 and 1.0.

2. If wli is fixed at 0.0, there is no connection between uodes ni and nj. Else, a

connection exists between nodes ni and nj.

Similar to 8c, we denote the Knowledge about a particular state n of B + as

K(n) where n represent the state of the nodes. This values is defined as:

llZ:llll_ll

= KCs +C.))=
iffiO jffii

Also,

llZ:llUz:ll

i----Ojfi

Minimizing K + or K_" results in maximizing K(n).

Knowledge in this system relates the amount of correlation between pairwise as-

serted node combinations. The higher the weight wo. , the less correlated the two

nodes nl, hi. The lower the weight, the higher the correlation. Correlation describes

the assessment over time of the chance that two nodes are _serted simulataneously.

As discussed previously, this pairwise correlation is important in determining which

binary sentence nodes should be asserted in order to find the best match for asserted

state change nodes.

Given a desired change of state, the purpose of each Boltzmann machine is to

output high K(n) (low Energy) values for sentences which have a high probability of

accomplishing that state change. To produces the maximum K(n) output, a search

technique must be employed to examine the _goodness" of binary sentences, and

select new sentences to test based on some performance criteria, i.e.:

1. Let 5Q represent the state vector of states which change from 0 to 1. Any field

qi e 6Q is set to I if it must change from 0 to 1, else it is set to 0.

55

2. For each field q_ in 5Q, if q_ = 1 then set n_ = 1 in E_.

3. Search the node levels LA, Lv, Lv, Ll to maximize K(n) of/_+.

The same method holds for B_" except we use 5Q to represented object states

which change from 1 to 0.

Search techniques

Three random search techniques are compared here which may be used to find the

minimum Energy in a Boltzmann Machine.

A genetic algorithm search technique

A technique which minimizes a system cost function isthe Genetic Algorithm [Ho175].

In contrast to other random search techniques,the Genetic Algorithm (GA) maintains

a population of points in the space while searching for the optimum.

Here we present a modified GA which willconverge in probabilityto the minimum

cost. The standard GA has been changed by insertingspacer steps of an algorithm

which isknown to converge in probability,Expanding Subi_ItervalRandom Search.

Spacer steps are defined as follows: Suppose B is an algorithm which together

with a descent function Z and solution set T converges in probability.We can define

an algorithm C by C(z) = (y :Z(I/)_< Z(z)}. In other words, C applied to z can give

any point so long as itdoes not increase the value of Z, the current cost. B represents

the spacer step, and the complex process between spacer steps isC. Thus, the overaLl

process amounts to repeated applications of the composite algorithm CB. CB will

converge in probability ifB isrepeated infinitelyoften and C' does not increase the

value of the current cost [Lue84].

We introduce the concept of immigration to imbed ESRS into GA. Infinitely

often, we insert a randomly generated point into the GA search which forms the

spacer step. The frequency of insertion is called the immigratiorL rate. By changing

the immigration rate, the algorithm adjusts its focus from global to local searches.

This rate may be fixed dependent on the complexity of the search space, or may

vary while the search is in progress. A high immigration rate will force random

search. A low rate will cause the GA. Parallels can be drawtl to Simulated Annealing

which starts as a near random search, and eventually becomes gradient descent. For

the modified GA, the immigration rate is analogous to the,'mai energy in Simulated

Annealing. The modified algorithm described in detail below converges in probability

to the minimum cost.

In general, for Holland's Genetic Algorithm, each point ir_ the space is represented

by a binary string and has an associated cost dictated by the system cost function for

that point. Since the makeup of the population is changed each iteration to emphasize

members (points) which minimize the cost function, a near-uniform population will

develop corresponding to a local minima in the cost function.

56

The following notation is used:

P = population of members (points)

P' = new population of members

[P[= number of members in P

Pk = kth member of the population P

Pk(m) = ruth bit of P_

Jk = cost of Pk

S_ = probabilityof member k being selected from current population

J,n_=- max cost of an possible member in P

n ---length of Pk in bits

Each iterationof the standard GA search algorithm proceeds as follows:

Repeat until (P_ eP and Pk has minimum cost)

' I. Compute Jk, VPk ¢ P.

2. Let J_ = J,_= - Jr, Vk. Compute Sk = J_,/(Zi J_,),Vk.

3. Repeat until IP'[--[P]

3a. Randomly select Pj, Pk from P based on Sj, S_.

3b. Randomly generate an index i between 1..n.

Exchange the right stringhalves of Pi, Pk

(i.e. = and =
This iscalled "crossover"or "mating'.

3c. Place P_, P_ in P'. Return Pj, Pl,to P.

4. Set P -- pl.

In an attempt to prevent population convergence on a local minima (premature

convergence), a mutation operator is added to the system. With a new generation

of the population, each bit of every member has a small probabilityof inverting.

The inversion adds diversityto the population and promotes search in previously

unexplored regions of the space in an attempt to find the global cost rn_In]mllm.

Particular aspects of thisalgorithm make ita powerful search tool.The crossover

mechanism forcessearch on an n-dimensional hypercube by discoveringand promot-

ing particularsubstrings (calledbuilding blocks)which perform well.These building

blocks combine to discover the topology of the search space, which may not be known

initially.Since the algorithm uses a population of points,many planes of the hyper-

cube can be searched at once, leading to implicit parallelism. Further, since members

within a population are independent, a new population may be formed by mating in

parallel. Steps 3a-3c can be blocked together and generate two new members in par-

allel with other mating blocks. These features as well as others are described in depth

in [Go189]. Applications of this algorithm are presented in [D J75, GGRG85, DC87].

Heuristic algorithms have been developed within GA to avoid convergence at

local minima [Mau84, SG87]. The "SIGH" system [Ack871 uses active and passive

subpopulations to escape local minima. When particular members of the population

57

are performing poorly, they become passive until the active subpopulation converges.

If this convergence is premature, the passive members are activated, bringing diversity

and new structure to the search.

Unfortunately, many of the heuristically driven GA searches perform well for a

small set of functions, and prematurely converge for functions outside that set. How-

ever, it can be shown that under certain conditions, the GA will converge in proba-

bility to the global minimum of the cost function.

Theorem 3.2:The Genetic Algorithm (GA) converges in probability to the global

minimum of a cost function Z if:

1. Instead of (or in addition to) the mutation operator, an immigration operator

is used. Introduce a member P_ generated randomly from a uniform density

function to population P_ every M populations for some integer M > 0.

2. If PkeP and VPieP, Jt <_ Ji then PkeP'. In other words, the best performing

stringin the current population isplaced in the next population.

Proof:

1. Let us define a function G which at iteration i generates P_ which is a randomly

selected state vector from a prespecified i.i.d, density function. Call G the

immigration function.

2. Let B be a function which generates a state vector Xi+_ at iteration i + 1 based

on:

P_ if Z(P_)- Z(Xi) <_2_
X +l

X, if Z(P/)- Z(X,) > 2_

where Z(X) is a descent function for the state vector X, and/_ is 0 since the

cost function is deterministic.

.

4,

The function B iscalledExpanding Subinterval random search and isknown

to couverge in probabilityto the minimum of Z(X).

Let C be the Genetic Algorithm described above with the modification that if

PkeP and VPieP, Jk <_ Ji then PkeP'.

5. In C, let the evaluation function J_ = Z(Pk).

6. At any iteration of C during a particular iteration i of B, let Xi - (PkeP :

VP, eP, z(ek) <_ Z(Pi))

7. Then C is an algorithm such that C(z) = {y : Z(y) <_ Z(z)}

58

8. Let us form a process CB from repeated iterations of C and repeated iterations

of B in any order with the constraint that B be repeated infinitely often.

9. Then the algorithm CB converges in probability to the minimum value of Z.

This proof inbeds ESRS into the GA, where ESRS is algorithm B as described

by [Lue84] and stated above. It insures C(z) = {y: Z(y) <_ Z(z)} where C is the

GA algorithm. Therefore, CB, the modified GA, converges in probability to the cost

minimum.

As one can see, these necessary conditions do not bind the algorithm severely.

The immigration rate (immigrations/population), l/M, is related to the mutation

rate (mutations/bit) as follows:

1/M - (mutations/bit) * (members/population)

In fact, the immigration of new members may be probabilistic, with probability

1/M.

Simulated annealing

One random search technique commonly used to find the global minimum cost in a

Boltzmann Machine is Simulated Annealing. This technique simulates the annealing

process of metal by probabiUstically allowing uphill steps in a state--dependent cost

function while finding the global cost minimum, or ground state. The algorithm

allows control of the search randomness by a user specified parameter, T. In true

metal annealing, this cost function is the Energy of the system, E, and T is the

annealing temperature [KJV83].

Given is a small random change in the system state Xi = {zl,x2,..., x,,} to X_

and the resulting Energy change, 6E, if 6E < 0, the change is accepted. If 6E > 0,

the probability the new state is accepted is:

p(X_+l = X_) = e-_s/_'_r

where Ks is the Boltzmann Constant and T is a user set parameter. By reducing

T along a schedule, called the annealing schedule, the system should settle into a

near-ground state a.s T approaches 0.

Another method for simulated annealing is discussed in [HS86]. Using this method,

if the Energy change between Xi and X[is 6E, then regardless of the previous state,

accept state X[with probability:

1
p(X,+I = X;) =

1 "1"e -'_I_/T

Since an Boltzmann Machine consists of a set of binary states, it should be noted

that in both of the above methods, X_ is hamming distancc l from X_.

59

The process of simulated annealing escapes local minima through its probabilis-

tic random search, and probabilistically convergences to the global cost minimum

under certain conditions [GG84]. The next technique, Expanding Subinterval Ran-

dom Search, probabilhtically guarantees convergence within a $ neighborhood to the

global nfinimum of a specified cost function.

Expanding Subinterval Random Search

A third technique for finding the global minimum value for a cost function for a

dynamic system is Expanding Subinterval Random Search as described in [Sar77].

Using Energy as the cost function and given a state Xi, one may definethe following

random search algorithm for an appropriately selected/J:

X_ if E(X_) - E(X_) <_ 2#
X_+I

X_ if E(X_)- E(X_) > 2_,

where E(Y) isthe Energy induced by state Y - (yl,y2,...,y,,)and X_ isa randomly

selected state vector generated from a prespecifiedindependent and identicallydis-

tributed density function.

It isshown that:

lira erob [E(Xn) - E'm < 5] -- 1
n-_O0

where E_i a is the global minimum Energy of the network. The existence of E_ is

proven in the cited work.

This method can be used on-line to find the global minimum Energy in a Boltz-

mann Machine.

Experimental Results

A net was created which recognized stringsof 15 bit binary numbers. This was done

by creating a network of 15 nodes, each connected to every other. The net was

formulated using the standard Energy methods found in [HS86].

The stateof nodes 4 and 6 (000010100000000) were held at I,which corresponded

to a fixed input to the network. By changing the values of the other nodes in the

network, the minimum Energy of the network could be found. For this purpose,

search techniques were invoked to find the minimum Energy by altering the node

values. The value of the nodes when the network was at minimum Energy formed an

ordered binary string which was the correct associativerecallof the network for the

given input.

For the given input, the net had three Energy minima, corresponding to states

(001010100100100, 110110110001101, 001111101100010) which were associativerecall

strings. The respective Energy for these three states were (0.8, 0.6, 1.0). Each

simulation technique attempts to find the global Energy miaimum of the net, which

6O

|

was 0.6, and corresponds to the correct associative response to the input. The cases

presented here show best and worst performance of each technique over 10 trials.

Other case which varied the depth and width of the Energy wells are presented in

[SM88]. For this experiment, the wells were narrow.

The Modified Genetic Algorithm was performed with the added convergence

techniques intact. The population was set at 20 members. Each member was 15 bits

long, so the number of bits in each population was 300. The immigration rate was

set to 0.5 which corresponds to a mutation rate of 0.025.

Simulated Annealing was performed and the system was cooled in accordance

with:
rl(t) 1

To log(10 + t)

where Tx(t) "- temperature at time t

To = initial temperature.

The net state changed in Hamming distance 1 increments.

Expanding Subinterval Random Search was slightly modified to reinforce

the probabilistic selection of node states which reduced the Energy in the net. The

probability of a node being active as initially 0.5. When the Energy was reduced

during search, the probability of the node being reactivated became

P(xi = 1) = P(zi = 1) + [1.0 - P(zl = 1)] * 0.1

if the node was active, or

P(xl = 1) = P(xl = 1) - P(xl : i) * 0.1

if the node was inactive.

Figures 3.6a - 3.6f present the best and worst performance of each algorithm

over 10 trials. Modified GA found the minimum Energy string between the 20th

and 180th population. Since there were 20 strings per population, this indicates that

between 400 and 3600 points had to be generated. The best performance by Simulated

Annealing required over 5500 iterations. The worst performance did not converge in

12000 iterations (the most attempted). As a guideline, the best performance of the

random search ESRS was slightly over 2000 iterations. The worst performance did not

converge in 12000 iterations. The results of these limited experiments force a closer

examination of the Modified Genetic Algorithm as a search technique for minimizing

the Energy in a Boltzmann machine.

Discussion on search techniques

The techniques discussed and simulated above axe all valid for application to the

//+ and B_" networks. With the state change vector 6Q fixed on the nodes, the LA,

Lv, Lo, and Lt levels can be searched to find the maximum K(n). However, a few

modifications to the search algorithms must be made.

61

1. Valid search strings must include exactly one asserted node in LA, one asserted

node in Lv, zero or one asserted nodes in Lo, and zero or one asserted nodes

in Lr.

2. Along with a particular string asserted on the node levels, the respective nodes

on levels LQ_, LAy, Lvo, Lvz must be asserted.

The minimum Energy search finds the binary sentence which has the highest

probability of achieving the desired state changes.

Item one of the above list yields a high rate of non-allowable strings compared to

allowable strings. Thus, the search techniques above may be inefficient at this task.

Research must be done to investigate and discover a set of efficient search techniques

which can find the minimum Energy in Boltzmann Machines of this nature.

Combined search of/3+ and B_'.

The minimization techniques presented above independently find a binary sentence

which maximizes K(n) (minimizes the Energy) for B+ and another binary sentence

which maximizes K(n) for B_. This technique may lead to the discovery of two

differentbinary sentences. To eliminate thispossibility,letus definethe K o - r/K#+-I-

(I- rl)K_',where 0.0 _<rl_<1.0.Further, letus force each network to assertthe same

binary sentence at each search step:

I. Generate a binary sentence E_.

2. Assert _i on nodes in both B + and B_'.

3. Assert the pairwise node levels.

4. Compute Kg.

5. Go to 1.

This will force the system to find a sentence which accomplishes both sets of

state changes simulataneously and will maximize K(n) by minimizing Kg which is

the combined state change performance.

How good is the found sentence?

Given a binary sentence, Ei found by maximizing K(n) for B,_, _; is the best available

sentence which may achieve the desiredstate changes. The questions arise:How good

isEi at actually changing the desired states? How likelyis itto change other states

instead?

One method for examining the "goodness" of a sentence in acheiving the desired

resultsisby looking at the Entropy of/39 for the given sentence. Ifthe system has low

62

r

Entropy for the given sentence, the sentence islikelyto affectthe states as desired.

Ifthe system has high Entropy for Ei, the sentence may not affectthe statesin the

desired way, and may actually affectother states.

The Entropy value can be derived from the Knowledge of the states of B + and

B_. We know that:

U_:IIUcU

KCB+(n)) = _ _ w,jn,ni
i-----Ojmi

Using the analytical model of the Intelligent Machine, we can Find the Probability

that the System is in State n:

ecB+cn))=

where p is a probability normalizing factor, and we can define:

H(Y+(n)) = _ _ P(B+(n))In{P(B+(n))}
11,

which isthe Uncertainty that the System is in State n.

Similar definitionsare used for B_'. In the above equations, n represents the state
of the nodes in the network.

The value/-/ is an Entropy measure which gives the uncertainty of knowledge

given a particular binary sentence _. This Entropy value reflectsthe uncertainty

that the IntelligentMachine changes only the desired object statesgiven the Z_.

To compute the uncertainty value/-/(B+(n)) given Zi for network B_:

i. For each field(r_in Z_ where (0 _< i <c flAIl- I), if_i = i, then set n_ -- 1.

2. For each field cri in _i where (I[AH __ i _ I[V[[- 1), if _i "- 1, then set n/v -- 1.

3. For each field a, in Z, where ([[VII < i <_ IID[[- 1), if _,, = l, then set nb -- 1.

4. For each field cri in El where (IID][_< i _ N - 1), if a, - 1, then set n_ - 1.

• " ij
5. For each pair of nodes n_ and n_ (i < j), if both nodes equal 1 then noQ -- 1.

6. For each pair of nodes n_ and n_,,ifboth nodes equal I then n_v - I.

• " ij
7. For each pair of nodes n_, and n_, ifboth nodes equal i then nvD -- I.

• " ij
8. For each pair of nodes n_, and n_, ifboth nodes equal i then nvx -- 1.

9. Set allother nodes to 0.

I0. Set p to 0.

ii. For each possible state vector 6Q:

63

• °

(a) For each field ql in 6Q, if ql -- I then set n_ -- 1, else set n_t to 0.

(b) Compute K +.

(c) ComputetheprobabilityvalueP(%+(.)).

12. Sum the probability values computed for each state 6Q and find the necessary

probability normalizing factor p so the sum equals i.

13. Normalize the probabilities by e -p.

14. Compute H(B+(n)).

A similar algorithm can be used for/_'.

This algorithm is of order O(2 M) where M is the length of the state vector Q. To

reduce the computational complexity of this algorithm, one can employ the locality of

effect premise. Under this a_sumption, the only states which need be considered are

those containing the direct or indirect object of E_. If w_ is the direct object and wi is

the indirect object the order of the algorithm becomes O(2"(d)+"*(0), (re(d) + re(i)

M).

Goal-directed exploration

Goal-directed exploration is the process of changing particular object states in the

state vector Q such that the new state vector Q' is closer (in a Hamming distance

sense) to a particular goal vector Q'. That is A(Q,Q') > A(Q',Q-). Given a

Boltzmann machine as described above, how can it be employed for goal-directed

exploration?

Provided with a given state change vector 6Q it is desirable for the Boltzmann

machine Ba to maximize K(n) in order to produce a binary sentence which accom-

plishes the necessary change of state. However, it is possible that the binary sentence,

although very likely to accomplish the task in some environmental states, cannot per-

form in the current environmental state Q. How can this be accounted for?

One method for accomplishing this type of exploration is by searching the networks

B +, 8 +, and Be simultaneously. Let us assign a measure IQ = CAHu(s) + (1 - _)K_,

where 0.0 < ¢ _< 1.0. IQ represents the combined values of the outputs of the

complexity and god-directed networks. ¢ allows the system to tradeoff between the

complexity and goal-directed outputs, while ,_ transforms the complexity output of

the complexity model to a scale applicable to the goal-directed networks.

Given a maximum Entropy threshold 8d which is the maximum allowable Entropy

of a god-directed sentence, the search for a low complexity sentence which is likely

to produce the desired state changes can be described by:

1. Let 6Q represent the state vector of states which change from 0 to 1. Any field

ql e 6Q is set to 1 if it must change from 0 to 1, else it is set to 0.

64

2. For each field qi in 5Q, if qi = 1 then set n_ = 1 in B +.

3. Let 6Q represent the state vector of states which change from 1 to 0. Any field

qi _ 5Q is set to 1 if it must change from 1 to 0, else it is set to 0.

4. For each field q_ in 6Q, if ql = 1 then set n_ = 1 in B_'.

5. For each field ql in Q, if ql = 1 then set n_ = 1 in Be.

6. Generate a binary sentence Ei.

7. Assert _i on nodes in the three networks.

8. Assert the pairwise node levels in the three networks.

9. Compute Kd.

10. Until minimum Kd is found, go to 6.

11. Compute H(Bg(n)).

12. If H(B_(n)) < Od then execute s_.

This algorithm searches for the binary stringwhich minimizes the combined En-

ergy value of the three networks, finds the Entropy of the binary stringin obtaining

the desired state changes, and sends the string to the Coordination levelifitis sat-

isfactory.

Task Decomposition in Planning

The main function of the Organizer is the development of a plan P composed of a

set of sentences S" which accomplishes a defined goal Q" from an initial state Q0.

The networks B+ and B + can be used to extract binary sentences which have a high

probability of changing particular object states. Given Q" and Q0, the object states

which must change can be easily determined. Using different combinations of this

state change vector, the goal-directed networks can develop a set of low Entropy

binary sentences to accomplish subsets of state changes, or subtasks.

After a set of subtasks is found, a graph search algorithm such as the one presented

in the next section can be used to develop skills which achieve task subgoals by

sequencing the subtasks and adding additional rules if necessary. These skills will be

placed in the rule storeand can be extracted by the planner to form a task plan. This

isone of the research directionsproposed in thisreport.

A Planner can use these skillsto reduce itssearch space when planning for a goal,

since each skillcontains achieves a multi-step subgoal. The Planner must be more

robust, however, because many plans may require a step _tway from the goal (in a

Hamming distance sense) in order to achieve the goal at some latertime.

65

3.4 The Planner

With the basic architectureof the Organizer in place, we can now focus on planning,

which isthe main function of the Organizer. Planning consistsofobserving the current

stateof the environment, receivinga desired goal state from an outside source (such

as a user),and formulating an ordered listof sentences which move the stateof objects

to the goal state when executed. Planning can be likened to a search process which

must find an ordered listof sentences which accomplish the goal state and minimize

some analytic criteriafor the plan.

The following functions are essentialto the Planner:

i. A structured search method including subgoal determination.

2. A cost function to be optimized.

3. An evaluation function which predicts the cost of following a paxticularsearch

directionand other methods for focusing the search.

Acquisition of new information (i.e. exploration of the environment) may also be

included when a plan becomes to costly.

3.4.1 A structured search method.

To decide on a structured search method for the Organizer, let us examine a few

alternatives.

Exhaustive Search

In the initial formulation for the Organization level of an Intelligent Machine, Vala-

vanis [Va186] forms an optimal plan P" to achieve a given goal using the following

procedure:

1. For each input command, formulate all possible ordered strings of primative
events.

2. Determine which ordered strings are compatible by a table lookup. Compatible

ordered strings have pairwise events which do not conflict.

3. Develop augmented ordered activities(strings)by insertingone repetitivepri-
mative event at a time between allpositionsof an ordered string.

4. Reject incompatible augmented ordered activities.

5. Find a complete plan which accomplishes the goal and minimizes the Entropy

of the system.

66

This method is an exhaustive search technique which must develop allpossible

plans before those which achieve the goal can be filteredout. In a case study per-

formed by Valavanis on plan formulation by a maintanence robot in a Nuclear Power

Facility,for a typicaluser input itwas found:

1. The number of unordered strings to be evaluated was 262,143.

2. The number of ordered strings to be evaluated was NOP = 17,403,456,152,414,460.

3. The number of ordered strings to accomplish all user commands was therefore

29*NOP, since there were 29 user commands.

As Valavanis states, these numbers axe already huge and not realistic even though

they do not include the augmented ordered activities.

Neural Network search

As described in previous sections,a neural network such as a Boltzmann Machine is

an efficientenvironment to perform searches which optimize some analytic measure.

The Boltzmann Machines presented search for sentences which minimize an Energy

measure manifested in the weights of the network. Each of the sentences contain one

actor,one action, one or zero direct objects and one or zero indirect objects. The

number of nodes in the network, denoted Jig:l[,equals

llJ ll= M + IIQQII÷ IIAII÷ IIAVll+ llVll÷ llVDll ÷ IIDII+ llVJ:ll÷ llIll

For a system with 10 objects each in 4 states, 5 actors, 5 actions, 10 direct objects

and 10 indirect objects, the number of nodes in the network is:

llr-lt- 40 + 780 + 5 + 25 + 5 + 50 + 10 + 50 + 10 = 975

of these nodes, 70 are visible and must be actively searched. The other 905 nodes

are hidden and are the palrwise connection nodes which are asserted automatically

depending on the state of the visible nodes. The number of weights in the network is

9+s2-97s = 474825. A network of this size is quite reasonable ['or search and updating.2
Expanding a Boltzmann machine to allow for the minimization of complete plans

would involve an expansion of the number of nodes and weights. Let us assume that

the maximum length of a plan is 10 sentences. Further, let us assume that each

sentence in the plan must be represented explicitly for the search to occur. Then a

first estimate for the number of nodes for the above system is 9750, with 700 visible

nodes. Since the number of states is 2"umb_'°l_i*ible"ode+, the number of states for this

system would be 2 r°° which is tremendous. Also, the number of weights for this

system is 47482500, an unwieldy amount considering current memory capacities. A

weight matrix of this size also forces an extremely slow learning procedure.

67

Graph Search

A technique which lends itself well to the Organizer planning problem is Graph Search.

Starting at a particular state which corresponds to a place in a graph, the search

decides which arc to follow in order to examine other places. The arcs dictate the

cost from one place to the next. The objective of the search is to find the minimum

cost path from the start place to the goal place. Typical gt'aph representations and

graph search algorithms are A" [HNR68], Means-End Analysis [NE65, NS72] and

AND-OR Graphs [Nil71].

The knowledge structure contained in the Organizer decomposes well to a graph.

The places in the graph are correspond to object states which are the condition and

effect portions of rules. The arcs are formed by the sentence portion of the rule.

Searching the graph corresponds to moving from the initial state to the goal state

by means of binary sentence execution. The cost of a particular path through the

graph is a function of the complexity of a rule and the probability of the rule going to

the desired next state. Since all paths do not have to be searched, this technique is

much better than exhaustive search. Using a good place evaluation function further

reduces the search size so that it performs much better than the neural network search
described above.

Graphical decomposition of rules

The following section provides a formal method tot the dec<_mposition of rules in the

rule store into graph form. and a method for searching th,, graph based on the .4"

algorithm. Proceeding sections will detail sections of this alqorithm, as necessary. It

should be noted that the "rules" used here can be extended 1,_ include skills developed

by the goal-directed Boltzmann Machine.

Before presenting the algorithm for graphical decomposit ion of rules, the following
functions must be defined:

i. Let Gp(r,,A) represent the directed graph of all pos,_ibleplans formed bv de-

composing the rules in R. a"denotes the set of allplaces and A represents the

set of allarcs.

2. Let NAMEP(rk) be the set of all place names for a s_tbset r_ e .v.

3. Let NAMEA(A_) be the set of all arc names for a suJ_._et .4k e A.

4. Let PLACEN(NAME) be the place with name NAME.

5. Let ARCN(NAME) be the set of arcs with name NA3[E.

6. Let PLACEA(A_) be the set of places directed t'rom .tc .4_.

7. Let ARCP(,-r_) be the set of arcs directed from place r_:.

68

ORIGINAL PAGE IS

OF POOR QUALITY

8. Let CREATEP(NAME) create a new place and assign it name NAME.

9. Let NEWARC(_r_,SENTNAME,H,P,_'I) create a new aL'c from place _'I, to place

_'t, assign it name SENTNAME, complexity H and effect probability P.

10. Let NEWPLACE(_'_, SENTNAME, H, P, PLACENAME) create a new place

named PLACENAME and create a new arc from place n'l, to the new place,

assign it name SENTNAME, complexity H and effect probability P.

The following algorithm constructs a directed graph of ?laces and arcs from de-

composing the rules in the rule store:

1. Let R_,,, = (VRjeR : #a.Ej).

2. Let R,_,_c = --,R_,,.

3. For all P_ e R,p,c:

(a) If E,e NAMEP(,v) then:

i. Let ,'r_ = PLACEN(E_).

ii. If Z, e NAMEA(ARCP(_)) then:

A. Let .4k = ARCP(_) A ARCN(..,il.

B. If T, e NAMEP(PLACEA(Ak)) then go _o 3.

C. If T_ e NAMEP(z) then NEWAR.C(a'_, E,, Hi, Pi-r,PLACEN(

T,)). Go to ,1.

D. else NEWPLACE(_, Z_, Hi, P_r,Y_). (',o to 3.

iii. Else NEWPLACE(rrk, 2,, Hi, Piz.,T,). Co to 3.

(b) ELSE:

i. Let ,'r_ = CREATEP(-_).

ii. If T, e NAMEP(_r) then NEWARC(,'r_,, E,, Hi, Pi-r,PLACEN(T,)).

Go to 3.

iii. Else NEWPLACE(,vk, v,, Hi, P_,T,). Go to 3.

For each specific rule in the rule store, the above algorithm assigns a new place

for each cause or effect that has not yet been encountered, aad builds an arc from the

cause to the effect of a rule. The places are given the same aame as the cause/effect

string, and the arc is given the binary sentence as its name. The arc is also given the

complexity of the rule and the effect probability in order to determine the cost of a

particular path while searching.

The algorithm above provides an explicit representation ['or the graph formed bv

the rules in the rule store. Many search algorithms do aot _eed an explicit represen-

tation. Instead. these methods develop a graph implicitly as the search proceeds. An

69

C_-t!_._ILL F&,2£ !S

OF POO;_ QUALITY

example of such an algorithm is the A ° search technique. The implicit representation

is extremely useful when considering the decomposition of generalized rules. In order

to create places for generalized rules, one must instantiate all the possible values that

can occur when replacing a #, and create a place for each one. An implicit represen-

tation would allow the search technique to generate only applicable instantiations for

generalized rules.

Given a Rule store R, a Complexity model /3c, a goal directed Boltzmann Ma-

chine /3g, a maximum complexity difference Oz, a maximum allowable path cost

MAXCOST, an initial set of object states Q0 and a user-defined goal state Q', let

us define the set ACTIVE as the set of places to be expandcd and the set CLOSED

as the set of already expanded places. Then, the A" algorithm PLAN proceeds as

follows:

PLAN Algorithm

1. Let rr_v,,,a = _'0 = CREATEP(Q0).

2. Let rr" = CREATEP(Q').

3. Determine R_c,_, = (VRi e R: A(NAMEP(zr,,_,,,d),--,) = 0)

4. Generate all places with arcs directed from ,%_,,,a using the algorithm above if

5. If R, e R_c,,_ A Ri e Rg,,, then INSTANTIATE(NAMEP(r,:_,,d),Ri). This

creates the instance of the general rule Ri which applies to the given state.

Then generate arcs and places as above.

6. Add this set of places to ACTIVE.

7. Move _'_p_,_d to CLOSED.

8. For each ,-r_ e ACTIVE, assign a cost value by:

(a) Compute He(NAMEA(_'k)), the complexity of t,he rule dictated by the

Complexity model.

(b) If [[Hc(NAMEA(Trk)) - Hk [Ik O_ then dmre is a large diffence be-

tween the complexity model computation and the current rule complexity.

For computing the cost using evaluation function f(), assume the higher

complexity value.

(c) Else, compute cost using f() with Hk.

9. Find rri e ACTIVE such that (V_rke ACTIVE]rr, _< r,_). This is the place with
the minimum cost.

7O

10. If _'_= _r° then DONE. A path has been found. Convert the arcs in this path to

binary sentences in E, and then to sentences in S. This set of sentences forms

the plan P e S'. Send P to Coordination level for execution.

11. If the cost of _i > MAXCOST then enter goal-directed exploration if allowed.

Else, return FAILURE.

12. Else, let _'_==p=,,a- 7r_. Go to 3.

The A" algorithm develops a graph implicitly be expanding found places denoted

bv the ACTIVE set until the goal is reached. It should be noted that decomposing the

task into subgoals could significantly reduce the search space for the A" Mgor_'hm.

Since subgoal determination is not a trivial task, research m,_st be done on this topic

in the context of the Organizer.

Under certain conditions the A" algorithm can find the minimum cost path to the

goal state if one exists. These conditions are dependent upon the place evaluation

function. Before we can discuss possible evaluation functions, it is necessary to detail

the cost function which must be optimized bv the search.

3.4.2 Cost of a plan

The analytic measure which describes the performance of _,he Intelligent Machine is

the Entropy of the svstem. It is the goal of the Intelligent X[achine to minimize this

measure, which reflects the execution of a highly certain plalJ by highly precise means.

As the Entropy increases at the Organization level, the certai,_tv of the plan decreases.

As it increases at the Execution level, the precision of the ,'oatrol decreases. It is the

responsibility of the Organization level to develop a plan wh,ch has low Entropy with

respect to execution and certainty of success.

The Organizer maintains the complexity of execution He(s) of a sentence s for

given object states Q. This value, stored in the rule, is an Entropy measure. Also

captured in a rule is the probability that the execution of s under conditions -- causes

effect T. This value is denoted P'r. As discussed above, these values can be assigned

to arcs in the graphical decomposition of the rule store. We must find a cost function

which promotes the search of paths which have high probal,iiity effects and have low

complexity measures.

Denoting the cost of an arc Ak for rule Rk by C(Ak), one. such measure is:

C(Ak) = _In2(P_) + (1 -<y)nc(sk)

The first half of the summation forces search on highiy probable rules. The second

half forces search based on the Entropy of execution. Tim constant 0.0 <_ -Z <_ 1.0
allows a tradeoff between these two values.

7l

ON!_N&L P_,3E IS

OF POOR QUALITY

3.4.3 Evaluation Functions

An evaluation function is employed to estimate the past cost and future performance

of a search at a given place in a graph. Typical evaluation t'unctions axe given by:

f(rr_) = g(,'rk) + h(rr_)

where fork) is the evaluation of place _rk, g() is an estimate of the past cost and

h() is an estimate of future performance. Let h'(Trk) be the actual cost from place ,-r_

to the goal state, it has been shown [Nil80] if:

h(-,k) <

for every place rrk _ r,, then the solution generated by A" search will be the

minimum cost path. Such a search technique is said to be ,dmissible.

Research must be done to find admissible evaluation functions for the Organizer.

Two simple ones are:

1. Best First: Set h to 0 for all places. Let g(,-r_) equal the total arc cost of the

path from ,'r0 to ,vk.

2. Locality of Effect: Under the locality of effect proposition, the execution of a

sentence effects the states of the direct and indirect objects. At each place ,'r_,

enumerate the number of objects which must change state. This determines

the minimum number of rules which must be execute([. Multiply this value by

a constant to scale to an arc cost, and set h(_) equal to this value.

Other methods may also be incorporated to focus th_ search along particular

paths. As described previously, the goal-directed BoLtzmann machine can be used to

generate subtask sentences which have a high certainty ot _tchieving desired object

state changes. These sentences can reduce the search space by focusing the exami-

nation on arcs which possess the subtask sentence name. The effect of this focusing

procedure on the search space must be examined in depth in the context of the A"

algorithm.

3.4.4 Acquisition of New Information

When developing a plan, it may become apparent that the least cost path found

exceeds a maximum cost threshold, even though the goal place has not yet been

found. If this is the case, the Organizer may select to expLore the environment in

a similar method _s PLAY. Instead of randomly selecting sentences to execute in

the environment, the Organizer can generate sentences through the goal-directed

Boltzmann Machine. By providing desired state changes as input to Bg, the Planner

can receive a set of sentences to execute which have a high certainty of moving the

system toward the goal. After executing these sentences, thc Planner can replan from

the current state to the goal.

72

il'_l_p t, w

3.5 Summary

This section described the architecture and operation of the Organizer, which is the

level that accomplishes abstract planning and decision making in the Intelligent Ma-

chine. The Organizer contains the following features:

• Symbolic rules which form a syntactic environmental effect model.

• Connectionist networks which assign semantic interpt'etation to the s.vmbofic

rules.

• An emergent framework which develops and modifies its information through

experience.

• Rule effects modeled probablistically.

• Generalization of both symbolic and semantic knowledge.

• Goal-directed behavior, search and planning.

The blueprint presented details the Rule store, the Complexity model, the Gen-

eralizer, the goal-directed Boltzmann Machine and the Planner. The first two mech-

anisms maintain the basic knowledge structures which are required to model the

actions of the Intelligent Machine on its environment. The advanced mechanisms

abstract information from the basic mechanism to facilitate the planning procedure.

The Planner uses a graph search technique to find the set of ordered sentences to

execute to achieve a given goal. Each of these mechanisms is developed within the

context of Saridis' Intelligent Machine. which provides an _n_Jvtic framework for the

development of the architecture.

T3

4 Further Research

Research Goals

The following list presents a set of research topics spawned by the architecture and

methodology proposed in this paper:

. The complexity model must be modified to bound the connection weights be-

tween 0.0 and 1.0. This will form a uniform model with the goal-directed

Boltzmann Machine.

. The training technique must be verified and full experimentation must be done

on the complexity model. Testing must be done to characterize the generaliza-

tion capabilities of the network.

, Other methods of generalization must be developed and experiments must be

performed with the Generalizer. Methods for creating a more robust default

hierarchy must be examined.

. Symbolic learning systems developed by other research should be tested in the

context of the Organizer.

5. A training technique must be developed for the goal-,tirected Boltzmann Ma-

chine.

. Search techniques must be further developed which extract minimum Energy

binary sentences from the goal-directed Boltzmann Machine. corresponding to

sentences with maximum K(n).

7. A method for developing subgoals in planning must be explicitly designed and

experimented with.

8. Several place evaluation functions must be found and tested.

9. The determination of a suitable analytic search criteria combining task com-

plexity and likelihood of success must be addressed.

10. The use of goal-directed behavior as an exploration tool after plan failure must

be looked into.

11. Computer simulations must be run to test each of the units separately and as

they function together.

12. A case study must be performed in a problem domain which examines the

performance of the Organizer.

74

Proposed Research

This report proposes accomplishing the following research, in addition to the work

already completed in this paper:

Given a rule store and a complexity model intact:

.

.

A training technique will be developed for the goal-directed Boltzmann Machine.

The Boltzmann Machine will train on each rule in the store to develop a semantic

representation between the binary sentences and the object state changes.

Search techniques will be developed for extracting sentences which maximize

the Knowledge about the state of the machine. These search techniques must

take into account the sparseness of the Machine states in order to be efficient.

.

.

Methods for forming skills based on subtask determination using the goal-

directed Boltzmann machine will be designed and tested.

Place evaluation functions for search during planning will developed to reduce

the search space.

Development of an analytic cost criteria during searcil must be experimented

with. An example of one, which provides a simple tradeoff between complexity

and probability of effect, is presented in this paper.

6. A case study using the above five research goals will be performed to test their

functionality.

Future work

Eventually, the following areas must also be researched and developed:

1. Allowing the architecture to dynamically expand to accommodate the introduc-

tion of new objects or states in the environment.

2. Testing the Organizer in a real-world environment.

3. Abstracting the binary states into predicate calculus relations to increase the

generalization capacity of the system.

75

References

lAck87] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer

Academic Publishers, 1987.

[AHS85] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm

for Boltzmanu machines. Cognitive Science, 9:147-169, 1985.

[Alb75] J. S. Albus. A new approach to manipulation control: The cerebellar

model articulation controller. Transactions of the ASME Journal of Dy-

namic Systems, Measurement and Control, 97:220-227, 1975.

lAnd72] J. A. Anderson. A simple neural network generating an interactive mem-

ory. Mathematical Biosciences, 14:197-220, 1972.

lAndS3] J. R.. Anderson. The Architecture of Cognition. Harvard University Press,

Cambridge, MA, 1983.

[APW88] P. J. Antsaklis, K. M. Passino, and S. J. Wang. Autonomous control sys-

terns: Architecture and fundamental issues. In Proceedings of the Amer-

ican Control Conference, volume 1, pages 602-607, 1988.

[AR881 J. A. Anderson and E. Rosenfeld. Neurocomputing: Foundations of re-

search. The MIT Press, 1988.

[BFKM86] L. Brownston, R. Farreil, E. Kant, and N. Martin. Programming Ezpert

Systems in OPS5. Addison-Wesley, 1986.

[Blo62] H. D. Block. The Perceptron: a model for brain functioning. I. Reviews

of Modern Physics, 34:123-135, 1962.

[Boo89] L. B. Booker. Triggered rule discovery in classifier systems. In Proceedings

of an International Conference on Genetic .4lgo,'ithms and their Applica-

tions, pages 265-274, 1989.

[BSA83] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE Trans-

actions on Systems, Man, and Cybernetics, 13:834-846, 1983.

[CarS6] J. G. Carbonell. Derivational analogy: A theory of reconstructive problem

solving and expertise acquistion. In R. S. Michalski, J. G. Carbonell.

and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence

Approach. Volume [I. Morgan Kaufmann PublisiJers. Inc.. Los Altos. CA,

1986.

76

[CS67]

[Day87]

[DC87]

[DD87]

[DeJ86]

[DJ75]

[DP86]

[FHN72]

[FL69a]

[FL69b]

[FN71]

B. Chandresekaran and D. W. C. Shen. On expediency and convergence

in variable-structure automata. IEEE Transactions on Systems, Science

and Cybernetics, 4:52-60, 1967.

D. S. Day. Towards integrating automatic and controlled problem solving.

In IEEE First International Conference on Neural Networks, volume 2,

pages 661-669, San Diego, CA, 1987.

L. Davis and S. Coomb. Genetic algorithms and communication link speed

design: Theoretical considerations. In Proceedings of an International

Conference on Genetic Algorithms and their Applications, pages 252-256,

Cambridge, MA, 1987.

C. P. Dolan and M. G. Dyer. Symbolic schemata, role binding and the

evolution of structure in connectionisr memories. In [EEE First Inter-

national Conference on Neural Networks. volume '2, pages 287-298, San

Diego, CA, 1987.

G. DeJong. An approach to learning from observaLion. In R. S. Michalski,

J. G. Carbonell. and T. M. Mitchell. editors, M,Lchine Learning: An .47"-

tificial Intelligence Approach, Volume H. Morgan Kaufmann Publishers,

Inc.. Los Altos, CA. 1986.

K. A. De Jong. An .4nalysis of the Behavior of a ,.'lass of Genetic Adaptive

Systems. PhD thesis, University of Michigan. Ann Arbor, MI, 1975.

M. Derthick and D. C. Plaut. Is distributed connectionism compatible

with the physical symbol system hypothesis? In Proceedings of the Eighth

Annual Conference of the Cognitive Science Society, 1986.

J. A. Feldman and D. H. Ballard. ConnectionisL models and their prop-

erties. Cognitive Science, 6:205-254, 1982.

R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing gen-

eralized robot plans. Artificial Intelligence, 3, 1!172.

K. S. Fu and T. J. Li. Formulation of learning _mtomata and automata

games. Information Science, 1(3):237-256, 1969.

K. S. Fu and T. J. Li. On stochastic automata and languages. Information

Science, 1(4):403-419, 1969.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application

of theorem proving to problem solving. Artificial [atelligence, 2(3,4), 197I.

, I

[67]

[Fu71]

[GG841

[GGRG85]

[Go183]

[(30189]

[Gro88]

[Har89]

[HdM89]

[HdMS88]

[HHNT86]

[Hin86]

K. S. Fu. Stochastic automata as models of learning systems. In J. T.

Tou, editor, Computer and Information Sciences [L Academic Press, New

York, 1967.

K. S. Fu. Stochastic automata, stochastic languages and pattern recogni-

tion. Journal of Cybernetics, 1(3):31--49, 1971.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and

Bayesian restoration of images. IEEE TTunsactions on Pattern Analysis

and Machine Intelligence, 6:721-741, November [984.

3. J. Grefenstette, R. Gopal, B. J. Rosmaita. and D. Van Gucht. Ge-

netic algorithms for the traveling salesman problem. In Proceedings of an

International Conference on Genetic .41gorithm_. pages 160-168. 1985.

D. E. Goldberg. Computer-aided pipeline opermion using genetic algo-

rithms. PhD thesis, The University of Michigan. Ann Arbor. MI, 1983.

D. E. Goldberg. Genetic Algorithms in Search. O/_timization and Machine

Learning. Addison-Wesley, 1989.

K. Goldberg and B. Pearlmutter. Using a neurM network to learn the

dynamics of the CMU Direct-Drive Arm [I. Technical Report CMU-CS-

88-160, Carnegie Mellon University, Pittsburgh. PA, 1988.

S. Grossberg. Nonlinear neural networks: Prmdples. mechanisms, and

architectures. Neural Networks, 1(1):17-62, _988.

S. Harnad. The symbol grounding problem. [n CNLS Conference on

Emergent Computation, Los Alamos, N.M., May t989.

L. S. Homem de Mello. Task Sequence Planning for Robotic Assembly.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1989.

L. S. Homem de Mello and A. C. Sanderson. Planning repair sequences

using the and/or graph representation of assembly plans. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages

1861-1862, 1988.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction.

The MIT Press, Cambridge, MA, 1986.

G. E. Hinton. Learning distributed representations of concepts. In Pro-

ceedings of the Eighth Annual Conference of the Cognitive Science Society,

pages 1-12, 1986.

78

[Hir87]

[HNR68]

[Ho175]

[Hop82]

[Hop84]

[HS86]

[HS87]

[HT851

[Jay57]

[KJV83]

[KM89]

[Koh72]

[KUIS88]

M. W. Hirsch. Convergence in neural nets. In IEEE First International

Conference on Neural Networks, volume 2, pages 115-124, San Diego,

CA, 1987.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. [EEE Transactions on Systems.

Science and Cybernetics, 4:100-107, 1968.

J. H. Holland. Adaptation in Natural and Artificial Systems. The Uni-

versity of Michigan Press, Ann Arbor, MI, 1975.

J. J. Hopfield. Neural networks and physical svslems with emergent col-

lective computational abilities. Proceedings of the National Academy of

Sciences, 79:2554-2558, 1982.

J. J. Hopfield. Neurons with graded response have collective compu-

tational properties like those of two-state neurons. Proceedings of the

National Academy of Sciences, 81:3088-3092, I984.

G. E. Hinton and T. J. Sejnowski. Learning and ,'elearning in Bo[tzmann

machines. In D. E. Rumelhart and J. L. McClelland, editors, Parallel

Distributed Processing Volume L The MIT Press. Cambridge. MA. 1986.

W. R. Hutchison and K. R. Stephens. Integration of distributed and sym-

bolic knowledge representations. In [EEE First International Conference

on Neural Networks, volume 2, pages 395-398. San Diego. CA, 1987.

J. J. Hopfietd and D. W. Tank. Neural computat ion of decisions in opti-

miziation problems. Biological Cybernetics. 52:11[-152. 1985.

E. T. Jaynes. Information theory and statisti_:d mechanics. Physical

Review, 106(4), 1957.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. \:,,cchi. Optimization by

simulated anneafing. Science, 4598, 1983.

R. B. Kelley and M. C. Moed. Knowledge-based robotic assembly system.

In G. N. Saridis, editor, Advances in Automation and Robotics, Vol. _.

JAI Press, 1989.

T. Kohonen. Correlation matrix memories. IEE£" Transactions on Com-

puters, C-21:353-359, 1972.

M. Kawato, Y. Uno, M. Isobe, and R. Suzuki. Hi,warchical neural network

model for voluntary movement with application to robotics. IEEE Control

Systems Magazine. pages 8-15. April 1988.

79

OR!C_Nu=,L PAGE IS

OF POOR QUALITY

[Lip87]

[Lue84]

[Mau84]

[MDM88]

[ME70]

[Min61]

[MKSS88]

[MP69I

[MPRV87]

[NE65}

[New80]

[Nil71]

[Nil80]

(Ns721

R. P. Lippmann. An introduction to computing with neural nets. IEEE

ASSP Magazine, pages 4-22, April 1987.

D. L. Luenberger. Linear and Nonlinear Programming, Second Edition.

Addison-Wesley, 1984.

M. L. Maudlin. Maintaining diversity in genetic search. In Proceedings of

the National Conference on Artificial Intelligence, pages 247-250, 1984.

M. Marra, T. Dunlay, and D. Mathis. Terrain classification using texture

for the ALV. In Proceedings of the i988 SPIE Symposium on Advances

in Intelligent Robotic Systems, 1988.

J. M. Mendel and K. S. Fu Eds. Adaptive. Learning and Pattern Recog-

nition Systems. Academic Press, New York. 1970.

M. Minsky. Steps toward Artificial Intelligence. Proceedings of the Insti-

tute of Radio Engineers, 49, 1961.

H. Miyamoto, M. Kawato, T. Setoyama. and R. Suzuki. Feedback-error-

learning neural network for trajectory control of a robotic manipulator.

Neural Networks, 1:251-265, 1988.

M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA.

1969.

R. J. McEliece, E. C. Posner, E. R. Rodemich. and S. S. Venkatesh.

The capacity of the Hopfield associative memory. [FEE Transactions on

Information Theory, IT-33(4), July 1987.

M. C. Moed and G. N. Saridis. A Boitzmann machine for the organiza-

tion of intelligent machines. In Proceedings of the NASA Conference on

Telerobotics, Pasadena, CA, January 1989.

A. Newell and G. Ernst. The search for generality. In W. A. Kalenich.

editor, Information Processing 65: Proceedings of [F[P Congress 1965.

pages 17-24. Spartan Books, Washington. D. C.. 1965.

A. Newell. Physical symbol systems. Cognitive Science, 4:135-183, 1980.

N. J. Nilsson. Problem-solving Methods in .4rtifici,d Intelligence. McGraw-

Hill. 1971.

N. J. Nilsson. Principles of Aritifical Intelligence. Tioga Publishing Com-

pany, Palo Alto, California, 1980.

A. Newell and H. A. Simon. Human Problem Solving. Prentice-Hall, 1972.

80

[NS76]

[NT74]

[PM471

[RHWS6a]

[RHW86b]

[Rio89]

[aM861

[Ros58]

[Ruc87]

[sAsg]

[Sar73]

A. Newell and H. A. Simon. Computer science as empirical inquiry: Sym-

bols and search. Communications of the .4 CM, 19:113-126, 1976.

K. S. Narendra and M. A. L. Thathachar. Learning automata - a" sur-

vey. IEEE Transactions on Systems, Man, and Cybernetics, 4(4):323-334,

1974.

W. Pitts and W. S. McCulloch. How we know universals: the perception

of auditory and visual form. Bulletin of Mathematical Biophysics, 9:127-

147, 1947.

D. E. Rumeihart, G. E. Hinton, and R. J. Williams. Learning inter-

nal representations by error propagation. In D. E. Rumelhart and J. L.

McClelland, editors, Parallel Distributed Processing Volume L pages 318-

362. The MIT Press, Cambridge, MA. 1986.

D. E. Rumethart. G. E. Hinton, and R. J. Williams. Learning represen-

tations by back-propagating errors. Nature. 323:533-536, 1986.

R. L. Rioli. Bucket brigade performance: [. Long sequences of classifiers.

In Proceedings of an International Conference on Genetic Algorithms and

their Applications, pages 184-i95, Cambridge, MA, 1987.

R. L. Rioli. The emergence of coupled sequences of classifiers. In Pro-

ceedings of an International Conference on Genetic Algorithms and their

Applications, pages 256-264, t989.

D. E. Rumelhart and J. L. McClellan& Parallel Distributed Processing,

Vol. [. The MIT Press, Cambridge, MA. 1986.

F. Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological Review, 65:386-408,
1958.

D. W. Ruck. Multisensor target detection and classification. Master's

thesis, AFIT/GE/ENG, Wright-Patterson AFB, Ohio. 1987.

L. Shastri and V. Ajjanagadde. A connectionist system for rule based

reasoning with multi-place predicates and variables. Technical Report

MS-CIS-89-06, University of Pennsylvania, Philadelphia. PA, 1989.

E. D. Sarcerdoti. Planning in a hierarchy of abstraction spaces. In Thzrd

International Joint Conference on Artificial Intelligence. Stanford. Ca,
1973.

81

[Sar75]

[Sar77]

[Sax79]

[S rS8]

[Sar89]

[SG841

[sG87]

[SM88]

[SteSla]

[SteSlb]

[Ste87]

[Sus88]

[SutS8]

E. D. Sarcerdoti. The nonlinear nature of plans. In Advance Papers of the

Fourth International Joint Conference on Artificial Intelligence, Tbilisi,

Georgia, USSR, 1975.

G. N. Saridis. Expanding subinterval random search for system identi-

fication and control. IEEE Transactions on Automatic Control, pages

405-412, 1977.

G. N. Saridis. Toward the realization of intelligent controls. IEEE Pro-

ceedings, 67(8), 1979.

G. N. Saridis. Entropy formulation for optimal and adaptive control.

IEEE Transactions on Automatic Control, 33(8):713-721, 1988.

G. N. Saridis. On the revised theory of intelligent machines. In Proceed-

ings of an International Workshop on Intelligent Robots and Systems,

Tsukuba, Japan, September 1989.

G. N. Saridis and J. H. Graham. Linguistic decision schemata for intelli-

gent robots. Automatica, 20(1), 1984.

J. Y. Suh and D. Van Gucht. Incorporating heuristic information into

genetic search. In Proceedings of an International Conference on Genetic

Algorithms and their Applications, Cambridge. MA. 1987.

G. N. Saridis and M. C. Moed. Analytic tbrmulation of intelligent ma-

chines as neural nets. In Proceedings of the [EEE Conference on Intelligent

Control, Washington, DC, August 1988.

M. Stefik. Planning with constraints (MOLGEN: part 1). Artificial In-

telligence, 16, 1981.

M. Stefik. Planning with constraints (MOLGEN: part 2). Artificial In-

telligence, 16, 1981.

Luc Steels. Self-organization through selection. In [EEE First Interna-

tional Conference on Neural .Vetworks. volume 2. pages 55-62. San Diego,

Ca, 1987.

H. J. Sussmann. Learning algorithms for Boitzmann machines. In Pro-

ceedings of the 27th Conference on Decision and Control. pages 786-791,

Austin, TX, 1988.

R S. Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3:9-44. 1988.

_2

[sv88]

[TH85]

[Tou87]

[Va186]

[Yam87]

[WG89]

[WH60]

[Wi185]

[wi1871

[Wi188]

[ws881

[Zho87]

G. N. Saridis and K. P. Valavanis. Analytical design of intelligent ma-

chines. Automatica, 1988.

D. S. Touretzky and G. E. Hinton. Symbols among the neurons: Details of

a connectionist inference architecture. In Proceedings of the International

Joint Conference on Aritificial Intelligence, Los Angeles, CA, 1985.

D. S. Touretzky. Representing conceptual structures in a neural network.

In IEEE First International Conference on Neural Networks, volume 2,

pages 279-286, San Diego, CA, 1987.

K. P. Valavanis. A Mathematical Formulation for the Analytical Design of

Intelligent Machines. PhD thesis, Renssetaer Polytechnic Institute. Troy,

NY, 1986.

T. Vamos. Metalanguages - conceptual model: Bridge between machine

and human intelligence. In Proceedings of the ist International Sympo-

sium on .4I and Ezpert Systems, pages 237-287, 1987.

S. W. Wilson and D. E. Goldberg. A critical review of classifier systems. In

Proceedings of an International Conference on Genetic Algorithms, pages

244-255, 1989.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In IRE WESCON

Convention Record, pages 96-104, New York, 1960.

S. W. Wilson. Knowledge growth in an artificial animal. In Proceedings of

an International Conference on Genetic Algorithms, pages 16-23, 1985.

S. W. Wilson. Hierarchical credit allocation in a classifier system. In

Proceedings of the Tenth International Joint Conference on Artificial In-

telligence, pages 217-220, 1987.

R. J. Williams. Towards a theory of reintbrcement-learning connectionist

systems. Technical Report NU-CCS-88-3. College of Computer Science,

Northeastern University, Boston, MA, 1988.

F. Wang and G. N. Saridis. A model for coordination of intelligent ma-

chines using Petri nets. In IEEE Symposium on Intelligent Control, Wash-

ington, D.C., August 1988.

H. H. Zhou. CSM: A genetic classifier system for learning by analogy.

PhD thesis, The University of Michigan, Ann Arbor, MI, 1987.

83

KNOWLEDGE-

BASED

ORGANIZER

V

DISPATCHER I

!

COO RD INATO R COO RD INATO R i

I1 " " " rl

I'
i

mm

HARDWARE

CONTROL

A
I

T

HARDWARE

CONTROL

PROCESS

1

{

I PROCESSR

Hierarchical Intelligent Control Systm

Figure 2.1

84

ORGANIZER ARCHITECTURE

ORGANIZATION LEVEL

FY

I

V /_

!
i

RULE

STORE

I
,=

Rules

I

PLANNER

BOLTZMANN MACHINE

-7
m

GENERALIZER

COMPLEXITY /

I

I

\

m

PLAY

Sentences_

/ \
MEASURE H

ABSTRACTED STATE

VECTOR Q
SENTENCES

\ /

COORDINATION LEVEL

/ \

EX'ECUTION LEVEL

\ /

Figure 3.1

85

NETWORK DIAGRAM AND PARTIAL WEIGHT DESCRIPTION

LEVEL QQ

LEVEL Q

LEVEL A

LEVEL AV

LEVEL V

LEVEL VD

LE_LD

LEVEL V!

LEVEL !

0_ 000000
oo op

QQ'QQ

Q(

o o o 6 \
()OQQ

QQO_QOQ(

)

)Q

Q

QQQQ

OOO

OOOO

\
\

I

ooo(_

Figure 3.2

$6

Z

0.2

0.18

0.16

0.14.

0.12

0.1

0.08

0.06

0.04

0.02

0
0

Both objects on Table, Grasp Objl, Alpha = .05
I i i) i

f I I ,i ,

20 40 60 18080 100 120 140 160

Iterationnumber

Figure 3.3a

2OO

1.2
Both objects on Table, Release Objl, Alpha = .0S

t l i i i i _ i i

o

0.8

0.6

0.4

0.2

i , , i • I I i i i i i

0 20 40 60 80 I00 120 140 160 180

Iteration number

Figure 3.3b

$7

2OO

0.18
Both objects on Table, Grasp Obj2, Alpha = .05

i i i i I i i i

&=
O

Z

0.16 -

0.14 -

0.12 -

0.1 °

0.08 -

0.06 -

0.04 -

0.02 -

,

0

1.2

20 40 60 80 IO0 120 140 160 180 200

Iteration number

Figure 3.3c

Objl on Table, Obj2 in Gripper, Grasp Objl, Alpha = .05
r i 1 i i i i

O

0

,=..a
0
Z

0.8

0.6

0.4

0.2

0
0

I f I I I .,_ ,I I I

20 40 60 80 100 120 140 160 180

Iteration number

Figure 3.3d

88

200

ex.

O

Z

¢kl
Z

1

0.9

0.8

0.7

0.6

0.5

0.4-

0.3

0.2-

i
0.1 -f

I
t

0
0

0.5

0.45

0.4.

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0

Objl on Table, Obj2 in Gripper, Release Objl, Alpha = .05
i I t

i i i i ' t

I I I I l i I I I

20 40 60 80 100 120 140 160 180

I .., I

20 40

2OO

Iteration number

Figure 3.3e

Objl on Table, Obj2 in Gripper, Release Obj2, Alpha = .05

F---

x../'-
I I I I I , I I

60 80 100 120 140 160 180 200

Iteration number

Vigure 3.3f
ORIGinaL
OF POOR

Q

t_

Z

I

0.8

0.6

0.4

0.2

Obj2 on Table, Objl in Gdpper, Grasp Objl, Alpha = .05

i

-02. ' ' ' , , ' ' '
0 20 40 60 80 100 120 140 160 180

Iteration number

Figure 3.3g

2OO

w
m

J_

Z

0.6

0.5

0.4

0.3

0.2

0.1

0
0 2O

Obj2 on Table, Obj I in Gripper, Release Obj 1, Alpha = .05

j-

I , I I I

40 60 80 i00
I I !

120 140 160 180 200

Iteration number

F_gure 3.3h

:)0

1

0.9

0"8 I0.7

= 0.6

O

0.5
c

0.4Z

0.3

0.2

0.1

0
0

/--
20

Obj_ on Table, Objl in Gripper, Release Obj2, Alpha = .05
i i i l l i i i

i | I I I I I I

40 60 80 100 120 140 160 180

Iteration number

Figure 3.3i

2OO

9l

ORIGINAL PAGE IS
OF POOR QUALITY

|

Both objects on Table, Grasp Objl, Alpha = .15

0.25

0.15

= 0.1
Q

t,,,,

_: 0.05

z

0

-0.05

-0.15
0 20 40 60 80 100 120 140 160 180 200

Iteration number

Figure 3.4a

Both objects on Table, Release Objl, Alpha = .15
1.4

o

Z

1.2

0.4

0.2

0 20 ,_0 60 80 [00 t20 140 160 180

Iteration number

Figure :l.4b

'_'2

200

0.35

Both objects on Table, Grasp Obj2, Alpha = .15
; i i 1 i

o

Z

0.3

0.25

0.2

0.15

0.I

0.05

-0.05

-0. I ' '
0 20 40

jr
! I

60 80
i I I I

I00 120 140 160

Iteration number
Figure 3.4c

2OO

Objl on Table, Obj2 in Gripper, Grasp Objl, Alpha = .15

0
0 20 40 60 80 100 120 140 160 180 200

Iteration number

Figure 3.4d

93

O

O

Z

1.2

0.8

0.6

0.4

0.2

Objl on Table, Obj2 in Gripper, Release Objl, Alpha = .15

_2

0
0 20 40 60 80 i00 120 140 160 180 200

Iteration number

Figure 3.4e

5

o

z

0.7

0.6

0.5

0.4

0.3

0.2

0.I

oJ

-0.1-

-0.2'
0

Objl on Table, Obj2 in Gripper, Release Obj2, Alpha = .15
i I i i i _ i i

!
I I L i I i i I A i

20 40 60 80 100 120 140 160 180 200

Iteration number

Figure 3.4f

!)4

1.2
Obj2 on Table, Objl in Gripper, Grasp Objl, Alpha = .15

--t
L_.

Z

0.8

0.6

0.4

0.2

0

-02. 1 , , , _ , , _ I
0 20 40 60 80 100 120 140 160 180

Iteration number

Figure 3.4g

200

0.5
Obj2 on Table, Objl in Gdpper, Release Objl, Alpha = .15

i t i I l i I ! I

o

Z

0.4

0.3

0.2:

0.1

0-

-0.1 "

I

2O
I I I I I I I I

40 60 80 100 120 140 160 180

Iteration number

Figure 3.4h

200

Obj2 on Table, Objl in Gripper, Release Obj2, Alpha = .15
1.2--------r----

O

z

0.8

0.6

0.4

0.2

-0.2
0 20 40 60 80 100 120 140 160 180 200

Iter_on number

Figure 3.4i

96

|

Both objects on Table, Grasp Objl, Alpha = .15
0.35

\

o

%)

z

0.3

0.25

0,2

0.15

0.1

0.05 I

0 /
0 20 40

f-',, ,_ ,

60 80 100 120 140

Iteration number

Figure 3.5a

I

160 180 200

1.4
Both objects on Table, Release Objl, Alpha = .15

l i i i i 1 I

o

o

Z

1.2

0.8

0.6"

0.4 ,-

0.2

I I I l i _ I t I

0 20 40 60 80 100 t20 140 160 180

Iteration number

Figure 3.51)

'_7

200

0.45
Both objects on Table, Grasp Obj2, Alpha = .15

! l ; ; l

o

Z

0.4

0.35

0.3

0.25

0.2

0.151 , , , , , , , , ,
0 20 40 60 80 100 120 140 160 180

Iteration number

Figure 3.5c

200

1.2
Objl on Table, Obj2 in Gripper, Grasp Objl, Alpha = .15

i ! T I i l i

=.
c_

Z

0.8

0.6

0.4

0.2

m

0
I I | i I I I |

20 40 60 80 100 120 140 160

Iteration number

Figure .3.5d

9_

I

180 200

o

Z

I [
i

0.9-

!

0.8-
I

0.7 -

0.6-

i

O.5

0.4 ,-
i

0.3-

Objl on Table, Obj2 in Gripper, Release Objl, Alpha = .15

t:-----c

0.2 -I
0.1-

0
0

I I I I I I I I I

20 40 60 80 100 120 140 160 180

Iteration number

Figure 3.5e

2OO

Q

0

Z

0.6

0.5

0.4 ¸

0.3

0.2

0.1

Objl on Table, Obj2 in Gripper, Release Obj2, Alpha = .15

/'-
.d--

0
0

l

20 40 60 80 100 120 140 160 180

Iteration number

Figure 3.5f

99

200

Obj2 on Table, Objl in Gripper, Grasp Objl, Alpha = .15

C

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.I

0

0.6

0 20 40 60 80 100 120 140 160 180

Iteration number

Figure 3.5g

Obj2 on Table, Objl in Gripper, Release Objl, Alpha = .15

2O0

,.a

Z

0.5

0.4 ¸

0.3

0.2

0"10

0 20 40 60 80 100 120 140 160 180

Iteration number

Figure. ?,.,3h

[I,)t)

2OO

1.2
Obj2 on Table, Objl in Gripper, Release Obj2, Alpha = .15

I) _ I I ! !

0

O

z

0.8

0.6

0.4

0.2

0
0

,

2o
I I I I I I I

40 60 80 I00 120 140 160 180

Iteration number

Figure 3.5i

200

i01

ii

._OO!FIEO G_ C_(l

t',,

I

lO0.O0
i i I

zoo.oo 300.00 400.00
PopuJ.a'_ion Number"

i

SO0.OO 600.00

Best Case

Figure 3.6a

tO2

NOOiFIEO GA C_ 2

I

I00._0
[r t

z00.o0 3oo._0 400.00
P_pula_ion Number

i

500.00 600.00

Worst Case

Figure 3.6b

t,_

oJ .,_ '
f-

LU

c_

_o.oo

J

[

1100.00

[

2200.00

SIMUL_TEO _NNE_LINO C_ l

v

I

3_00.00

Iterations

I

4400.00 $500.00 6600.00

Best Case

Figure 3.6c

\

104

SIMULATED _NNEgLING C_s_ 2

I,Q

u.J

°_

c_

0.00

I
i

1200.00

t

/)I

24oo.0o 36oo.oo
I:cra_ions

IN

4800.00

lii

I

5000.00 7200.00

Worst Case

Figure 3.6d

', ()._

\

EgRg C=_c 2

I

1000._0
I

2000._0 3000._0
I_er_Tions

!

4000.00 5000._0
1

Best Case

Figure 3.6e
I

_(1t,;

c=

_e
co

r-

-qp

N

e-j
c,O_

=0.00

EgRg C_ 3

1000.00

L
]

2000.00
I

3000.00
I_crEions

I : I

4000.00 5000.00 6000. gO

Norst Case

Figure 3.6f

L(I7

